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Abstract. The force interaction of cable elements is observed by the deformation of a flexible 
cable. To assess these forces, the cable is considered as a compound of the rod with a 
completely rigid cross-binding. The article represents some expressions used to define the 
forces, arising by the flexible cables service. 

Introduction 
Elastic cables are intended to connect mobile mechanisms and machines with a power source. While 
in operation, there are cyclic displacements of these mechanisms which lead to the deformation of 
flexible cables. Depending on their application (all-service, shaft cables, cables for drilling tools and 
etc.) the flexible cables are exposed to different types of deformation. These deformations include 
bending, torsional, tensile strains (deformations) and some other types. These deformations cause the 
destruction of the wires of a current-carrying conductor, deterioration of insulating and cable hose 
wrapping, its sheath and insulation breakdown. The above mentioned problems lead to the failures of 
actuating mechanisms and machines. The main direction in the manufacture of reliable cable products 
is to ensure the mechanical strength of cables aimed at improving their reliability under the impact of 
various deformations. 

This study [1] defines the forces of the interaction between cable elements similar to the Kelley’s 
experiment [2, 3]. The method determining the friction force and friction coefficient [4] is also known. 
This method allows defining the efforts of friction between the cable construction elements. These 
methods require some additional experiments to be carried out with end products (items) and should 
be conducted without any deformation, for instance, without any cable bending. During the 
experiment, it is difficult to find the relation between geometrical parameters and shearing forces. The 
task to define this shearing force has still not been solved theoretically. 
 

Materials and methods 
The producing plant is provided with operating (performance) characteristics which are necessary to 
comply with to ensure the cable functionality within its lifetime. The minimal bending radius by 
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installation and service is one of the parameters to be ensured for flexible cables. Therefore, let us 
consider the practical example of cable reeling on the drum (cable pulley wrap) with certain radius. 

The solution of the problems associated with the definition of shearing forces for cable elements is 
possible if the cable is represented as a compound rod with completely rigid cross-bindings using the 
equations of shearing forces (shear thrusts) from the general theory of compound rods [5]. To simplify 
the problem the following assumptions are introduced: copper wires of a cable conductor (core) are 
considered as solid copper rods; current-carrying conductors (cores) are arranged in parallel to each 
other (without their twisting). We consider this system as a laminated plate under the conditions of 
plane deformation. The transition to the axially symmetric problem is carried out through 
transformation G(1/x) [6]. 

By reeling radius R on the drum, the bending moment (torque) affects the cable. This bending 
moment (torque) is determined from the following ratio [7]: 

0 ,xEJ
M

R
=

 
where E is a reduced module of cable elasticity; Jx is  the inertia moment of the cable section. 

Let us determine the shearing forces (shear thrusts) between three and four-core cables (figure 1). 

 

Figure 1. The section of three and four-core cables: 1) outer insulation; 2) cable cores (conductors) 
with inner insulation. 

Each of these cables can be represented as a four-layer compound rod (figure 2). It is assumed that 
the current-carrying conductor (core) and its surrounding inner insulation operate as a comprehensive 
whole (one unit) and the contribution of the inner insulation in the core rigidity is insignificant. 

1 2 3

 

Figure 2. A four-layer compound rod 1) the rod, which bending stiffness (flexural rigidity) is equal to 
the rigidity of the semicylinder of the outer insulation; 2) the rod which bending stiffness (flexural 
rigidity) is equal to the rigidity of the stack of current-carrying cores; 3) longitudinal bracing of layer 
interconnection. 

Let us introduce the following symbols: rk is the radius of cable cross-section, rt is the radius of a 
current-carrying conductor (core), Ft, Jt are relatively the cross sectional area and the axial moment of 
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inertia of a current-carrying conductor (core), Ek, Et are modulus of material elasticity of its outer 
insulation and the current-carrying conductor (core). 

Shearing forces (shear thrusts) in the equivalent four-layer rod can be defined from the differential 
equation system [5]: 
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 (1) 

where ξi is the shear rigidity coefficient of the i-seam (joint); Ti is total shearing force (thrust) in the i- 
seam (joint), which is accumulated over the rod length from its heading to the considered section; 

0

x

i iT dx= τ∫  , where τi  is shearing force (thrust) per length unit of the i-seam (joint); x is the coordinate 

of the considered section. 
The coefficient ∆ij is determined as follows: 
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where ci is the distance between the centers of gravity of the compound rod elements connected with 
each other by the i-seam (joint). 

Taking into account that E1F1 = EkFk, and the tensile rigidity of the current-carrying conductors are 
identical and equal to EtFt for three and four and four-core cables (taking into account that c1 = c3), let 
us get the formula for defining the coefficient ∆ij and the distance ci (table 1, 2). 

 
Table 1. Formulas for determining ∆ij coefficients. 

Coefficients For three-core cable For four-core cable 
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Table 2. The distance between centers of gravity of a compound rod. 
Distance ci  For three-core cable For four-core cable 
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The cross-sectional areas of the compound rod elements are as follows: 

( )2 2 ;
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π= −  

2.t tF r= π  

The moment of semi cylinder inertia of the outer insulation of a three-core cable can be represented 
as: 
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The moment of semi cylinder inertia of the outer insulation of a four-core cable is as follows: 
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The moment of inertia of a current-carrying conductor (core) can be calculated as: 

4.
4t tJ r
π=  

The total bending rigidity of a three-core cable is: 

2 3 .k k t tEJ E J E J= +∑  

The total bending stiffness (flexural rigidity) of a four-core cable is relatively: 

2 4 .k k t tEJ E J E J= +∑  

The combined equation of equilibrium (1) can be approximately brought to one equation based on 
the principle of minimal potential energy of internal forces. The condition of minimal potential energy 
can be represented as follows: 
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where n is the number of seams (joints) of the compound rod (in this case n = 3). 
It is reasonable to assume that αi ≈ ci, since the shearing force (thrust) of the seams (joints), which 

is ξi determined by the area of core contact and outer insulation, is relatively small. The solution of this 
equation (3) is as follows: 

( ) ( )0 0 0 0 0 0 0 0
0

1 1
sh ch sh sh ch ch 1 ,

x

T A x B x x t dt A x B x x= λ + λ + ∆ λ − = λ + λ + ∆ λ −
λ λ∫  

then 

0 0 0 0 0 0ch sh sh .T A x B x x′ = λ λ + λ λ + ∆ λ  

The constant coefficients A, B are found from the boundary conditions: 
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Eventually, the forces (thrusts) Ti are defined as follows:  
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 (5) 

Discussion 
The defined shearing forces (thrusts) are the friction force between the cable elements. The 
mechanism of cyclical deterioration of insulation layers can be implemented if a) the above considered 
mechanism of cable bending takes place with low intensity; b) current-carrying conductors (cores) 
experience free cyclical shifts interacting with each other by means of the forces of sliding friction. 
Since the law of shearing (shift) distribution alongside the contact surfaces within the length of 
deformation zone has a zone of extreme shearing (shift), the mechanism of cyclical tear and wear 
allocates just in this zone [8]. 

Cyclical deterioration leads to the failure caused by a short circuit between conductors due to wear-
out of the double layer of insulation of the adjacent current-carrying conductors. The parameters, 
which define the operability and efficiency of the cycle, are the amplitude of shearing (shifts) and 
shearing stress on the contact surface, which in turn depends on the material frictional properties, 
insulation layers and forces of normal interaction. 

The proposed solution is simplified. Therefore, the results of calculation using these formulas 
should be considered as estimating (evaluating) and require more accurate definition, for example, 
applying numerical methods. 

On the basis of the obtained formulas (5), it is possible to claim that shearing forces in cables 
depend on element materials, geometrical parameters, the bending radius and the length of the cable 
deformation area. 

The obtained results of calculations allow assessing (estimating) the shearing forces (shearing 
stresses) on the contact surface of the cable elements. The reliability assessment of insulation and its 
mechanical strength is carried out by comparison of the real values of stresses for contacting elements 
with the assumed values for cable materials [9 - 12]. This is a necessary prerequisite for 
prognostication of operability, efficiency and mechanical strength, taking into account the contact 
interaction of cable construction elements. The advantages of the proposed solutions are in their 
simplicity and the possibility to use them for more complicated cable constructions. 
 
Conclusion 
The expressions (5) were obtained to assess the value of shearing forces in three-core and four-core 
cables originated by their reeling. The calculations were carried out based on the representation of 
multiple-core cable as a compound rod with completely rigid cross binding. The approximate solution 
was obtained through the substitution of the differential equation system for a multilayer rod by one 
equation of minimum potential energy. The obtained solution is not applied to the fields close to the 
cable ends, which are equal to five diameters of the rod.  
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