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Abstract. A model problem of transversal vibrations of an elastic conducting rod in the 
magnetic field is studied. Vibrations in the rod are excited due to kinematic and force factors. 
A partial differential equation of motion containing the integral term for the electromagnetic 
force was constructed. After applying the Fourier procedure, the problem is reduced to a set of 
ODEs. The condition for passive stabilization of the main vibrational mode’s amplitude is 
derived. A method of active electromagnetic suppression of certain vibrational modes is 
proposed. 

1.  Introduction 
Mechanical vibrations commonly appear in instruments and mechanisms of various purposes [1-3]. 
Such apparatus needs to be controlled in order to reach certain pre-chosen frequency response. In other 
cases, the unwanted vibrations have to be controlled and suppressed, or the systems need to be moved 
out of resonance [4-7]. This type of control in the case of conducting systems (a string or a rod) has 
some interesting properties. It can be used to suppress or excite certain vibrational modes, to 
selectively modify certain groups of partial frequencies, to affect nonlinear properties of the system or 
create conditions for parametric resonance. 

The goal of the present work is to determine the conditions for passive and active electromagnetic 
suppression of transversal vibrations of the elastic rod, excited simultaneously by force and kinematic 
motion. 

2.  Results 
Let us consider linear transversal vibrations of a homogeneous conducting rod made of non-magnetic 
material with its both ends attached to the base which is vibrating according to the law of motion 

( ).txx=  The ends of the rod are connected by an ideal electric circuit. The rod is placed in a 

homogeneous magnetic field which is stationary in the considered reference frame, with its В
�

-vector 
directed along the Оу axis (Fig. 1). The magnets that create the field rest on the same base as the rod. 
Reference frame Охуz connected with the base is non-inertial. Apart from the kinematic excitation, the 
rod is subject to the force excitation due to distributed load: 
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( ) ( ) ( )tgzftzQ =, , 
 

where ( )zf  and ( )tg  are known functions. 
 
 
 
 
 
 

 
 
 
 

 
 
 

Figure 1. Scheme of vibrational system. 
 

Let us construct the differential equation for the transversal vibrations of the rod introducing the 

following notations: ( )tzu ,  is the displacement function, EJ is the stiffness of the rod, β  and *β  are 

the coefficients of external and internal dissipation, respectively, 0m , l, andА are linear mass density, 
length and cross-section of the rod, respectively, σ is the conductivity of the rod, В is the magnetic 
field: 
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The last term in the left-hand side of (1) describes the electromagnetic force that appears when the 

conducting rod is moving in the external magnetic field. Let us apply the Fourier procedure to (1), 
expanding thedisplacement function into a series of amplitude eigenfunctions ( )zX r , using the 

generalized coordinates ( )tqr . The resulting system of ODEs reads: 
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Here, 
 

 
are generalized forces of the distributed load, with  
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being the wave numbers, np  are partial eigenfrequencies. 
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are generalized inertial forces. 
Equations (2) can be rewritten in the dimensionless form: 
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Here, 
1

2

p

B

ρ
σ

=St  is the Stuart number, ρ  is the volumetric density of the rod, 1p  is the principal 

vibrational frequency. 
Analysis of (3) leads to several conclusions: 
1) modes that satisfy condition 0=rγ  are isolated from the action of electromagnetic field and 

kinematic excitation; 2) r-th partial vibration is not affected by the distributed load if *
rδ = 0.  

Electromagnetic force can be controlled by varying the width of the active area. The problem can 
be generalized by assuming that the field acts on interval 12 zzz −=∆ , and load ( )tzQ ,  is distributed 

over interval 12 zzz ′−′=∆′ . In this case the problem is reduced to the system of ODEs: 
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 are generalized forces of the distributed load. In dimensionless form, 

the system becomes: 
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with the following notations: 
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being generalized electromagnetic forces, with  
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being generalized forces from the distributed load, with ( ) ( )∫=′
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Careful analysis of (5), shows the following: 
1) there is a special set of modes for which 0=rγ  and which are not excited kinematically;  

2) the modes for which 0* =rγ  are not susceptible to electromagnetic field;  

3)  condition 0=′*rδ  defines the group of modes that are not affected by the force coming from 
the distributed load. 
 

3.  Discussion 
In general, all three sets of modes defined this way are different. When analyzing a given problem, it 

is important to determine the intersection of these sets. Let us assume, for example, that 01 ≠′*δ , 

01 ≠γ , 01 ≠*
γ  for the principal partial vibration, i.e. all the force factors are in play simultaneously. 

In this case there is a possibility to stabilize the amplitude of vibrations by applying electromagnetic 
field. Invoking the method of energy balance, let us determine the Stuart number for which the energy 
of kinematic and force excitation is compensated by dissipation. The principal vibration in the 
dimensionless form reads:  

,sin11 tcq =                                                                            (6) 
 

where 1c  is its steady-state amplitude. For two fixed points, the corresponding amplitude 
eigenfunction has the form: 

( ) z
l
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πα sin11 = .                                                                   (7) 

 
In a one-mode approximation the principal vibration is described by the following ODE: 
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After equaling the work done by inertial and external forces to the work of dissipative force, one 

gets: 
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where π21 =T . 
The definite integral in the right-hand side contains the known functions of time. Renaming: 
 

( ) ( )
∫ 










−

′
=

1

0 1

11

1

1
1 sin

T
*

tdt
*Y

γtΦ

*Y

δtg
N                                             (10) 



5

1234567890

IPDME 2017 IOP Publishing

IOP Conf. Series: Earth and Environmental Science 87 (2017) 032045    doi   :10.1088/1755-1315/87/3/032045

 
 
 
 
 
 

 
and utilizing (9) and (10), one gets the Stuart number that grants passive stabilization of the principal 
vibration with given amplitude 1с : 
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One can see that electromagnetic force is limited by the value of induced electric current. The 

damping can be increased many times by introducing the source of electromotive force (EMF) into the 
electric circuit connecting the ends of the rod, which creates the AC current( )tj . This current can be 
generally expressed as a harmonic series with any number of frequencies and initial phases. In 
particular, function ( )tj  can be expanded over damped eigenfrequencies. The generalized forces (all 
or some of them) will then be the same as the corresponding dissipative forces, so increasing the 
damping of all or some vibrations. In other words, with the help of amplifier with the electronic 
frequency analyzer, it is possible to increase the induced currents by using external EMF source. In 
contrast to a passive magnetic stabilization, the proposed method of electromagnetic damping can 
conveniently be called an active one.  
 
4.Conclusion 
The obtained results allow construction of mechatronic system of vibration control for various 
purposes. They could be applied when the traditional methods of vibration isolation are not sufficient. 
Industrial mining could serve as an example of such situation, when in addition to significant ground 
vibrations (kinematic excitation) there exist sound waves that create force excitation. These factors 
negatively affect the registration apparatus and thus have to be compensated. 
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