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Abstract. A model problem of transversal vibrations of dasBc conducting rod in the
magnetic field is studied. Vibrations in the ro& &xcited due to kinematic and force factors.
A partial differential equation of motion contaigirthe integral term for the electromagnetic
force was constructed. After applying the Fouriergedure, the problem is reduced to a set of
ODEs. The condition for passive stabilization o thnain vibrational mode’s amplitude is
derived. A method of active electromagnetic supgioes of certain vibrational modes is
proposed.

1. Introduction
Mechanical vibrations commonly appear in instrureesrttd mechanisms of various purposes [1-3].
Such apparatus needs to be controlled in ordeyachrcertain pre-chosen frequency response. Im othe
cases, the unwanted vibrations have to be cordraltel suppressed, or the systems need to be moved
out of resonance [4-7]. This type of control in ttese of conducting systems (a string or a rod) has
some interesting properties. It can be used to regppor excite certain vibrational modes, to
selectively modify certain groups of partial frequies, to affect nonlinear properties of the system
create conditions for parametric resonance.

The goal of the present work is to determine theditmns for passive and active electromagnetic
suppression of transversal vibrations of the alastil, excited simultaneously by force and kinemati
motion.

2. Results
Let us consider linear transversal vibrations dbanogeneous conducting rod made of non-magnetic
material with its both ends attached to the basktwls vibrating according to the law of motion

x:><t). The ends of the rod are connected by an ideal riglecircuit. The rod is placed in a

homogeneous magnetic field which is stationanhidonsidered reference frame, with &svector
directed along th@®y axis (Fig. 1). The magnets that create the fietdl o@ the same base as the rod.
Reference framéxyz connected with the base is non-inertial. Apanrfithe kinematic excitation, the
rod is subject to the force excitation due to distied load:

Content from this work may be used under the terms of the Creative Commons Attribution 3.0 licence. Any further distribution
BY of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI.
Published under licence by IOP Publishing Ltd 1



IPDME 2017 IOP Publishing
IOP Conf. Series: Earth and Environmental Science 87 (2017) 032045 doi:10.1088/1755-1315/87/3/032045

Figure 1. Scheme of vibrational system.

Let us construct the differential equation for thensversal vibrations of the rod introducing the
following notations:u(z,t) is the displacement functioR,) is the stiffness of the rog3 and 8~ are
the coefficients of external and internal dissipatirespectivelym,, |, and4 are linear mass density,
length and cross-section of the rod, respectivelis the conductivity of the rodB is the magnetic

field:
o*u . 9% 9°u  ou) oB2Afou 9%x
BJ —+ + —+f— |+ —dz=-m,— +0Qlzt). 1

(624 'Baz“atJ mo(at2 atJ I Jot e Qlz) M

The last term in the left-hand side of (1) desaitiee electromagnetic force that appears when the
conducting rod is moving in the external magneigtdf Let us apply the Fourier procedure to (1),
expanding thedisplacement function into a seriesamplitude eigenfunctionsxr(z), using the

generalized coordinates (t). The resulting system of ODESs reads:

b, + (s + pp7Ja, + pla, =%—Q—T"—Q—i. {r=12..}. @)

T mr mr
Here,

Q =gl flAz=olt)s

are generalized forces of the distributed loadh wit
| |
5 =j><r(2)f(2)d2: m* =moj><3dz=n”bYr*
0 0

being generalized masses, with
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being generalized electromagnetic forces, with

| | >
=| X,dz, =IX dz;a'n=4,/p”m0
yn ,('). n VI’ ) r EJ

being the wave numberg, are partial eigenfrequencies.

|
D, :x_[xrdz:)cyr
0

are generalized inertial forces.
Equations (2) can be rewritten in the dimensiontess:

t)5, @ ©
+|(8+ B*p?lg + p? :g('—fyr—St i y—“,r=2.... 3
a, +(g+pp2a, +p2a, vy arYr*nZ:lanq”{ 2.} @)
2
Here,StzUB
P Py
vibrational frequency.

Analysis of (3) leads to several conclusions:
1) modes that satisfy conditiop, =0 are isolated from the action of electromagnegtdfiand

is the Stuart numberp is the volumetric density of the rogb, is the principal

kinematic excitation; 2)-th partial vibration is not affected by the distried load ifb': =0.
Electromagnetic force can be controlled by varyimg width of the active area. The problem can
be generalized by assuming that the field actsawtemial Az=z, -z, and IoadQ(z,t) is distributed

over intervalA'’z=2z, — z . In this case the problem is reduced to the syste@DES:

o, +(+ pp2), + pia, =Qfmf“° S Q0 fogp ),

(4)

where Q, = g(t)f X, (z)f (z)dz are generalized forces of the distributed loaddiimensionless form,

the system becomes:

00 *

g +(p+ proth, + g, =SB L gy > g, {r=12.}. 5)

* * *
Yr Yr arYr n=1 %n

with the following notations:
Z Z *
oB2A [ > L f oB2A), .y
Q == X, 20| 6, | Xodz | =-ET D g, 2
| z n=1 7 |0£r n=1 &n

being generalized electromagnetic forces, with
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being generalized forces from the distributed lagith 6, = J X, (z) f( (z)dz.
Careful analysis of (5), shows the following:
1) there is a special set of modes for whjgh=0 and which are not excited kinematically;

2) the modes for whicry: =0 are not susceptible to electromagnetic field;

3) condition 8" =0 defines the group of modes that are not affectethe force coming from
the distributed load.

3. Discussion
In general, all three sets of modes defined thig ara different. When analyzing a given problem, it

is important to determine the intersection of thests. Let us assume, for example, tlﬁl'ét;t 0,

7720, yl* # 0 for the principal partial vibration, i.e. all tlierce factors are in play simultaneously.

In this case there is a possibility to stabilize #mplitude of vibrations by applying electromaimet
field. Invoking the method of energy balance, leidetermine the Stuart number for which the energy
of kinematic and force excitation is compensateddissipation. The principal vibration in the
dimensionless form reads:

G =c,sint, (6)

where ¢, is its steady-state amplitude. For two fixed p®inthe corresponding amplitude
eigenfunction has the form:

Xl(alz)=sin7|—Tz. (7)

In a one-mode approximation the principal vibrat®described by the following ODE:

2" ™
. N . _ g(t)51 Dy,
+| B+ B +St +q, =711 171 8
G [ﬁ p Ve J(h O vy v (8)

After equaling the work done by inertial and extrforces to the work of dissipative force, one

gets:
-jl ,3 + ,3* + St —8}/12* cost [$intdt -Jr% g(t)éi* - 1(t)yl sintdt (9)
! 7-1—2 1 ) Yl* Yl* !

whereT, = 277.
The definite integral in the right-hand side consahe known functions of time. Renaming:

*
1

HEEEA0
lej'[g - lesintdt (10)
Iy Y,
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and utilizing (9) and (10), one gets the Stuart benthat grants passive stabilization of the ppaCki

vibration with given amplitude; :
2 *
_arY, (2N, .
St——z(——ﬁ—ﬁ’ . 11

1 C1

One can see that electromagnetic force is limitgedhe value of induced electric current. The
damping can be increased many times by introdutiagource of electromotive force (EMF) into the
electric circuit connecting the ends of the rodjaircreates the AC currei(t). This current can be
generally expressed as a harmonic series with amgbar of frequencies and initial phases. In
particular, functionj(t) can be expanded over damped eigenfrequenciesgditeralized forces (all

or some of them) will then be the same as the sparding dissipative forces, so increasing the
damping of all or some vibrations. In other wordsth the help of amplifier with the electronic
frequency analyzer, it is possible to increaseitideiced currents by using external EMF source. In
contrast to a passive magnetic stabilization, ttapgsed method of electromagnetic damping can
conveniently be called an active one.

4.Conclusion

The obtained results allow construction of mechatrosystem of vibration control for various
purposes. They could be applied when the traditiorehods of vibration isolation are not sufficient
Industrial mining could serve as an example of sitimation, when in addition to significant ground
vibrations (kinematic excitation) there exist soumdves that create force excitation. These factors
negatively affect the registration apparatus and thave to be compensated.

References

[1] Kyura N, and Oho H 1996EE/ASME Transactions on Mechatronics. 1(1) 10-15

[2] Steinhauser J, and Nad M 204pplied Mechanics and Materials. 808 315-320

[3] Kia S H, Henao H, and Capolino G A 200REE Transactions on Industrial Electronics.
56(11) 4689-4699

[4] Karnopp D C, Margolis D L, and Rosenberg R C 2@&em Dynamics. Modeling and
Simulation of Mechatronic Systems. (5" ed. New York:Wiley) p 648

[5] Lyshevski S E2013Int. J. Advanced Mechatronic Systems 5(5) 1-9

[6] Wang W et al. 201@&udy on Application of Two New Types of Piezodlectric Actuators to the
Vibration Control. (Piezoelectric & Acousto Optics. V. 1) p 223.

[7] Preumont A 201Vibration control of active structures: an introduction. (Berlin, Heidelberg,
NewYork, Hong Kong, London, Milan, Paris, Tokyo:riger) p 480



