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Abstract. Intentional modification of food or substitution of food ingredients with the aim of 
gaining profit is food fraud or economically motivated adulteration (EMA). EMA appeared in 
the food supply chain, and following the global expansion of the food market, has become a 
world-scale problem for the global economy. Food frauds have involved oils, milk and meat 
products, infant formula, honey, juices, spices, etc. New legislation was enacted in the last 
decade in order to fight EMA. Effective analytical methods for food fraud detection are few 
and still in development. The majority of the methods in common use today for EMA detection 
are time consuming and inappropriate for use on the production line or out of the laboratory. 
The next step in the evolution of analytical techniques to combat food fraud is development of 
fast, accurate methods applicable using portable or handheld devices. Spectrophotometric and 
spectroscopic methods combined with chemometric analysis, and perhaps in combination with 
other rapid physico-chemical techniques, could be the answer. This review discusses some 
analytical techniques based on spectrophotometry and spectroscopy, which are used to reveal 
food fraud and EMA. 

1.  Introduction 
Cases of food adulteration in order to increase profit margins are dated back to the earlier ages of 
civilization. Intentional modification of food or substitution of food ingredients with the aim of 
gaining profit is food fraud or economically motivated adulteration (EMA) [1]. Unfortunately, EMA 
occurs today and, following advances in food technology, has become more sophisticated. EMA 
appears in food supply chains and is conducted by food producers, processors, distributors and/or 
retailers [2]. Following the global expansion of the food market, the consequences of EMA have 
emerged into a world-scale problem and have great impact on the global economy. 

EMA inevitably leads to production of food with lowered nutritional value. This type of fraud not 
only has financial impacts on consumers, and society in general, but, more importantly, has adverse 
effects on health and food safety. Prolonged diet with such food could have devastating consequences 
to public health [3]. Recent reports exposed that food frauds and adulterations include a vast variety of 
food, such as oils, milk and meat products, infant formula, honey, juices and spices. In order to protect 
consumers and eliminate EMA, or to lessen its possibility, new legislation relating to the adulteration 
of food and food labeling was enacted in last decade [4,5]. Legislation for containing food fraud is still 
in development but, in order to be effective, needs strong logistic support. In addition to government 
agencies and inspectorates, essential support in revealing EMA includes development of analytical 
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methods to detect food frauds. As it is difficult to formulate any effective legal basis for suppressing 
EMA, it is also a burdensome task to develop and apply appropriate analytical methods for its 
detection [6]. 

Knowledge of the specificity and characteristics of analytical techniques is essential for detecting 
EMA of food. Such knowledge should be helpful in choosing appropriate analytical techniques for 
detection of adulterants of interest in a specified food matrix by controlling laboratories. Also, this 
could be a guideline for research laboratories to focus their exploration into development of new or 
improvement of existing methods. In a reciprocal way, it could help regulators to establish legal 
frameworks for revealing food frauds and EMA. 

Various methods and techniques of chemical analysis are used to reveal adulterants in food [7]. 
They can be divided into several groups based on: absorption of electromagnetic radiation – 
colorimetric and spectroscopic methods and nuclear magnetic resonance (NMR); chromatographic; 
molecular and immunological methods; elemental, isotopic and mass spectrometry techniques; and 
chemometric methods based on statistical analysis of data obtained by some of these previously 
mentioned techniques. Especially in recent years, the need for rapid methods for food authentication 
and food fraud has arisen, as well as the need for methods that can be performed on-site. Therefore, 
the aim of this review is not to list all the methods for the detection of EMA, but to indicate 
approaches that can lead us to, or at least closer to, achieving that goal. The most promising methods 
are spectroscopic methods. They are quick, simple, require small quantities of the food/sample, and 
are usually non-destructive and non-invasive. Miniaturization of spectrophotometers and the 
manufacture of portable or hand-held instruments means in-situ measurements have become a reality. 
There are many portable spectrophotometers on market today. They can measure reflectance or 
transmittance of food/samples and can be used for direct measurement without sample pre-treatment. 
This makes them suitable for control on production lines, in storage areas and shipping departments, 
or indeed, everywhere where it is necessary to perform fast measurements. Furthermore, an overview 
of recent methods based on the absorption of electromagnetic radiation in the infrared (IR), visible or 
ultraviolet ranges used to detect EMA of food is presented. 

2.  Spectrophotometric methods 
Methods such as sensitive spectrophotometry, differential spectrophotometry, derivative 
spectrophotometry, and spectrophotometry using chemometrics [8] can be used to reveal EMA in 
beverages, drinks, confectionery, spices, milk, olive oil, jams and sweets. Spectrophotometric 
measurement of specific extinction increase at 270 nm can be used to detect adulteration of extra-
virgin olive oil by the addition of refined olive oil or other vegetable oils. Stigmasta-3,5-diene, a 
characteristic compound of refined oils, has an absorption peak at 270 nm [9]. The method is simple, 
rapid, low-cost, and eminently suitable for in-situ measurement. 

Combining spectrophotometric methods with other analytical techniques enhances their possible 
application in detecting food EMA. Spectrophotometric methods and thin layer chromatography 
(TLC) [10] were applied to detect sweets and jams adulteration with synthetic colorants. Eight 
synthetic food dyes were used in the reported research [10]. The Kjeldahl method and 
spectrophotometric methods were employed to evaluate detection of milk adulteration by nitrogen-rich 
compounds such as melamine, ammonium sulfate or urea [11]. Standard (Kjeldahl) methods fail to 
identify adulteration by nitrogen compounds, and classical spectrophotometric methods for protein are 
not sensitive to these compounds. In combination, the proposed methods were able to recognize 
nitrogen added to milk and/or whey. It is suggested that this combination of Kjeldahl and 
spectrophotometric methods should be used to screen for milk adulteration by these compounds [11]. 

However, spectrophotometric techniques have limited application and often, they must necessarily 
be combined with other analytical techniques. 

3.  Color measurement 
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Measurement of color in HunterLab and CIE L*a*b* systems were used as supplementary techniques, 
mainly to describe visual properties of food [12]. Color of food can sometimes be improved by adding 
prohibited dyes [13]. Adulteration by adding coloring stuffs in food is maybe the oldest and most 
common means of food fraud. Colorings are added (fradulently and legally) to various foods from 
beverages to meat products and from confectionery to spices and oils. Reasons for the widespread 
usage of dyes in EMA is twofold: first, synthetic dyes are cheap and easily available, and, second, 
staining of lower quality food or food manufactured from low-grade ingredients provides higher profit. 
Therefore, the measurement of the surface color of food in HunterLab and CIE L*a*b* systems is 
usually used in assessment of food quality and safety [14]. However, the potential of such methods for 
detecting EMA is not yet fully recognized. Some efforts were made to employ food color 
measurements for detecting EMA and compliance with regulatory requirements [15]. The rapid 
method based on CIE L*a*b* measurements combined with chemometrics was used to estimate food 
coloring contents in meat products [15]. The method was developed to determine the presence and 
quantification of one permitted and two prohibited food dyes in frankfurters and fine-chopped boiled 
sausages, and it might also be useful during sensory evaluation of meat products for the assessment of 
the added food colorants. 

4.  Fluorescence spectroscopy 
Fluorescence spectroscopy has the lowest limits of detection of all spectroscopic analytical techniques, 
but it is limited to polyaromatic hydrocarbons (PAHs) and heterocyclic compounds with rigid 
skeletons. It is a sensitive, selective and nondestructive technique. Development of new generation 
fluorescence spectrometers with powerful software for acquisition and interpretation of spectra 
resulted in application of this technique for EMA detection. Therefore, total synchronous fluorescence 
(TsyF) with the partial least square (PLS) model was used for the differentiation of virgin olive oil 
from olive-pomace, corn, sunflower, soybean, rapeseed and walnut oils [16]. Other applications of 
fluorescence spectroscopy combined with extensive use of chemometric tools were in food quality 
assessment of animal (dairy, meat, fish and egg) and vegetable (oils, cereal, sugar, fruit and vegetable) 
products [17-19]. 

The combination of fluorescence spectroscopy with other techniques such as Fourier transformed 
infrared spectroscopy (FTIR) was reported for authentication of extra-virgin olive oil. PLS method 
was used for both fluorescence and FTIR spectra analysis. The results suggest that FTIR and 
fluorescence could be a useful tool for analysis and detecting adulteration of extra-virgin olive oil with 
pomace oil. 

5.  Infrared spectroscopy 
Infrared spectroscopy (IR), based on absorption of heat rays by molecular bonds with dipole moment, 
has been used for food quality and food authenticity assessments. In accordance with the applied 
spectral range, IR can be divided into two techniques – mid infrared (MIR) and near infrared (NIR). In 
MIR (fingerprint range), IR radiation is absorbed as a consequence of fundamental vibrations of atoms 
in the molecules. NIR spectra are the result of superposition of composite, overtone and high 
frequency absorption bands at shorter wavelengths. 

Methods based on IR spectroscopy are among the most widely used methods for revealing EMA of 
food. Both MIR and NIR were used for detection of food frauds and authenticity of honey, meat, meat 
products, cheeses, milk, fish, spices, olive oil, and so forth. 

The application of attenuated total reflectance (ATR) MIR microspectroscopy was evaluated as a 
rapid method for detection and quantification of milk adulteration [20]. Milk samples were spiked 
with different concentrations of whey, hydrogen peroxide, synthetic urine, urea and synthetic milk. 
Soft Independent Modeling of Class Analogy (SIMCA) pattern recognition analysis with Partial Least 
Squares Regression (PLSR) were used for estimation of adulterant levels. Results showed that MIR-
microspectroscopy can provide an alternative methodology to the dairy industry for screening 
potential fraudulent practice for economic adulteration of cow’s milk [20]. 
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NIR methods with latent variable models applied to the spectral data were developed and used to 
estimate proximate composition, fatty acid profile, fillet yield and cooking loss, and to classify the 
available dataset by the rearing farm and genetic strain of raw and cooked freeze-dried rainbow trout 
(Oncorhynchus mykiss) fillets [21]. No major differences were observed between the results obtained 
from raw freeze-dried fillets and those obtained from cooked freeze-dried fillets, except for the 
estimation of some chemical constituents of interest, such as C22:6n-3 and polyunsaturated fatty acid 
content, both of which were better estimated in cooked freeze-dried fillets [21]. 

In a recent study, methodology based on the combination of MIR and NIR measurements and 
chemometric data processing was reported [22]. Such approach could overcome the disadvantages of 
both techniques and offer more accurate and reliable results in detecting the EMA. 

6.  Raman spectroscopy 
Raman spectroscopy (RS), similar to IR, gives spectral information on fundamental vibrations of 
functional groups in a molecule. It is based on the inelastic scattering of incident radiation through its 
interaction with vibrating molecules [23]. RS and MIR are complementary techniques, but RS has 
some advantages over MIR. Water has weak absorption in RS and does not cause interference in 
Raman spectra. Taking into account the fact that most foods contain more or less water, the lack of 
interference due to water is essential for the reliability of methods for determining food authenticity. 
Absorption bands in Raman spectra are narrower than IR spectral bands. This is of significant 
importance for RS application, because narrow bands mean less overlapping, especially in complex 
matrices such as foods. RS also can be applied to analysis of foods directly through plastic or glass 
bottles and wrappers, bags and other transparent packaging materials [24]. 

RS scattering is weak, and new, improved techniques like Surface Enhanced Raman Spectroscopy 
(SERS), in contrast to classic Raman spectroscopy, provide lower detection limits, allowing 
applications in food adulterant determination [7]. For example, three Raman modalities, normal 
Raman, FT-Raman and SERS, combined with principal component analysis (PCA), were evaluated as 
a tool for detecting Sudan I dye in culinary spices. The results show that SERS is the most appropriate 
modality capable of providing a proper Raman signal when a complex matrix is analyzed [25]. RS 
combined with chemometrics was also applied to examine adulterations of honey by syrup and sugar 
solutions, olive oil by vegetable oils or pomace olive oils, and meat and fish [26]. 

7.  Chemometrics 
Almost all recent spectroscopic methods for food authentication use the chemometric approach for 
development and validation processes. This brief review would not be complete without a section 
dedicated to the chemometric application for food authenticity analysis. The reason for employing 
chemometrics in spectrophotometric and spectroscopic techniques is that spectra obtained by these 
aforementioned techniques are large datasets which cannot be resolved by conventional analysis. 
Chemometric tools, such as data mining, data fusion etc., are crucial for handling datasets generated 
by analytical methods for EMA detection. 

A sample spectrum is, in fact, an “image” of the sample and can be treated in the same way as any 
digital image analysis. Data pre-processing, enhancement, segmentation, feature extraction and data 
classification for generation of applicable methods to spectroscopic data are based on similar 
mathematical models to those used in digital image processing for facial recognition or satellite image 
analysis [27]. Chemometrics resembles digital extraction and clean-up of the sample instead of using 
physical manipulation for clean-up; this is a major obstacle for common application of chemometric 
methods, because their calibration and validation necessitates a large number of samples. They are 
matrix-dependent too, and every change in matrix composition means a new calibration and validation 
process. Despite these disadvantages, the development of analytical methods based on spectroscopy 
combined with chemometrics is becoming more important, and the further efforts are being directed 
toward improvement of chemometric tools to become more robust and less sensitive to the influence 
of the matrix. 
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8.  Conclusion 
General features of spectrophotometric and spectroscopic methods are their simplicity, rapidity, and 
ability to be directly applied to foods/ingredients in different aggregate states, with fast, minimal or 
without any preparation. Production of new, cheaper and miniature, portable or handheld instruments 
for spectroscopy made them applicable on production lines, outdoors, in storage areas, etc. Their 
potential dual measurement modality, transmittance and reflectance, make spectroscopic methods 
useful in the resolution of various analytical tasks. 

The combination of spectroscopic techniques with chemometrics has made them applicable for 
revelation of EMA and authentication of food. The majority of new spectroscopic methods for 
detecting food frauds are based on chemometric analysis. Although they are still under development, 
some of these methods have already been incorporated into benchtop and portable instruments. Further 
improvement of spectroscopy combined with chemometrics will require development of methods 
which are more robust and less sensitive to the influence of the matrix. 

The next aspect to be addressed is the combination of spectroscopy with other analytical 
techniques, such as measurement of thermal, electrical or electrochemical properties of the food. This 
combination could improve reliability of results, and accuracy of determination and classification 
without loss of rapidity, simplicity or other advantages. Any additional data on the characteristic of the 
food, or by extension, other sample types, will contribute to a better and more accurate answer as to 
whether the food/sample is authentic or not. As the coupling of chromatographic techniques with mass 
spectrometry has made a significant breakthrough in analytical practice in the past, the integration of 
spectroscopic methods, either with one another or with other physico-chemical techniques, could make 
significant progress in detecting EMA of food in the future. That future requires rapid and reliable 
methodology for revealing EMA, which is fundamental for the production of safe and healthy food. 
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