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Abstract. High nonlinearity is a typical characteristic associated with data assimilation systems. 

Additionally, iterative ensemble based methods have attracted a large amount of research 

attention, which has been focused on dealing with nonlinearity problems. To solve the local 

convergence problem of the iterative ensemble Kalman filter, a modified iterative ensemble 

Kalman filter algorithm was put forward, which was based on a global convergence strategy 

from the perspective of a Gauss-Newton iteration. Through self-adaption, the step factor was 

adjusted to enable every iteration to approach expected values during the process of the data 

assimilation. A sensitivity experiment was carried out in a low dimensional Lorenz-63 chaotic 

system, as well as a Lorenz-96 model. The new method was tested via ensemble size, 

observation variance, and inflation factor changes, along with other aspects. Meanwhile, 

comparative research was conducted with both a traditional ensemble Kalman filter and an 

iterative ensemble Kalman filter. The results showed that the modified iterative ensemble 

Kalman filter algorithm was a data assimilation method that was able to effectively estimate a 

strongly nonlinear system state. 

1   Introduction  

As in highly nonlinear dynamical and observational models, introducing iterations to a Kalman filter 

has proven to be beneficial for estimation problems [7]. To improve the performance of the traditional 

ensemble Kalman filter (EnKF) [5], the iterative ensemble Kalman filter (IEnKF) was recently 

proposed [13]. At the cost of additional iterations and propagations of the ensemble, this IEnKF was 

shown to significantly outperform the EnKF, especially in cases with large time intervals between 

updates [3]. The IEnKF should be considered for use in cases where there is a well-constrained system 

with nonlinear growth during the assimilation cycle (the propagation was initially nonlinear but 

became linear through repeated iteration). Later on, Bocquet and Sakov (2012) proved that the IEnKF 

can be taken as a lag-one smoother and be further extended to a fixed-lag smoother: the iterative 

ensemble Kalman smoother (IEnKS). The IEnKS is an ensemble variational method that does not 

require the use of the tangent linear of the evolution or the adjoint of observation models. By using a 

nonlinear least square formulation, Gu and Oliver [6] were able to introduce an ensemble randomized 

maximum likelihood (EnRML) method. In an EnRML, the sensitivities are calculated using an 

ensemble based method. However, for high-dimensional problems, the ensemble approximation of the 

sensitivity matrix is often poor [4]. An iterated EnKF [9] was also proposed with a running in place 

scheme, which was referenced by Sakov [13] and applied by Penny [12] in a realistic Ocean General 

Circulation Model (OGCM) reanalysis. In further study of all iteration-based Ensemble Kalman filters, 

we found that one downside was that only when certain local conditions are satisfied can the 
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convergence reach an ideal value, and there exists the possibility of failure under conditions with large 

initial errors.  

Because the Newton method, which was implicitly adopted [13], is only one of many minimization 

schemes to minimize the cost function of data assimilation systems, there is still a large degree of 

freedom in choosing an iterative scheme, such as the Levenberg-Marquardt algorithm [3]. In this study, 

an IEnKF with a quick local convergence is combined with a global convergence strategy for the 

purpose of achieving a modified iterative ensemble Kalman filter algorithm (modified IEnKF: 

MIEnKF) that leads to every iteration in the process of assimilation to tend towards the optimal value. 

Thus, even if the initial value was not accurately estimated, the higher-accuracy solution of the 

iterative convergence can still be obtained. Experimental tests were conducted on this algorithm with 

both ensemble Kalman and iterative ensemble Kalman filters in some typical, corresponding chaotic 

systems to confirm the algorithm.  

 2   Gauss-Newton derivation of the IEnKF 

A Gauss-Newton iteration algorithm is an approximate application of a Newton iteration algorithm, 

which is an iterative method type for nonlinear equations. In this study, the updated problem of the 

EnKF observation was transformed to solve the minimum cost function, and the observation iterative 

equation was deduced from the angle of a Gauss-Newton iteration algorithm, which thereby proved 

that an IEnKF is a type of Gauss-Newton iteration process. 

The IEnKF was introduced [13], in which the prior probability density function is   

2| , ,..., N1
p(x x x x )： 
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1 1
( )( )

1

N N
T

l l l

l l

x P
N N 

   

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where lx  indicates the l-th member forecast ensemble. It need not match the mean bx , and the error 

covariance matrix B of the prior probability density function, 2| , ,..., N1
p(x x x x ) , E, is the ensemble of 

model states and 1 const . 

Suppose that we have the following dynamical system, then, the prediction and observation 

equations of the system are shown as follows:   

Prediction equation: ( )f Mx x                                                          (2) 

Observation equation: ( )y h x,R                                                       (3) 

where M indicates the nonlinear model operator of the system; R is the observation error covariance; 

the superscript f indicates the prediction value; and x indicates the model state vector; the effective 

prior probability density function satisfies: 

2| , ,..., ( ; , )f

N N -

1p(x x x x ) x x P                                                      (4) 

According to the Bayes theorem, the posteriori probability of the system state can be shown as follows: 

2 2| , , ,..., | | , ,...,N N
1 1

p(x y x x x ) p(y x)p(x x x x )                         (5) 

where is the normalized constant and y indicates the observation vector at a certain update step. 

 |p y x is the likelihood probability and satisfies:  

 | ( ( ( )), )fN hp y x y M x R;                                                           (6) 

where h() is the observation operator and R is the observation error covariance matrix. 

Therefore, while solving the maximum posteriori estimation of x,  can be ignored, and the cost 

function of the state variable can be shown as follows:  

11
( ) (( ( ( )) ( ( ( ))) (

2

f T fJ y h M y h M    x x R x x  (
1) ( )))f T f x P x x            (7) 

When [ ( ) ]T f T TY y x , then it obeys a Gaussian distribution, the mean is ( ) [( ( ( ))) ]f T T Tu h Mx x x , and 

with the variance being ([ , ])diagσ P R , the cost function is equivalent to the following: 
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( ) ( ( )) ( ( ))
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TJ     x Y x Y x                                                 (8) 

Moreover, when 1T S S σ , ( ) ( ( ))l x x S Y , then the following can be obtained: 

21
( ) ( )

2
J lx x                                                                  (9) 

According to Eq. (9), the IEnKF update can be transferred to the solution of a nonlinear least squares 

method, and the Gauss-Newton iterative algorithm can be used to obtain the solution of Eq. (9) as 

follows: 

)()())()(( 1

1 i

T

ii

T

iii llll xxxxxx  

                                    (10) 

where )( il x is the Jacobian matrix of )( il x ; i is the iteration quantity; 
TT

il ])[()( IHMSx  ; H  is 

the Jacobian matrix of )(xh ; and I is the unit matrix. Then, when substituted into Eq. (10), the 

following can be obtained:  
1 1

1 ( ) ( ) { [ ( )] ( )}f i T f

i i ih M 

     x x P HM R y x HM x x
                      (11) 

When the gain is set as 1 1( ) ( )i T K P HM R , then:  

1 { [ ( )] ( )}f i f

i ih M     x x K y x HM x x                               (12) 

This equation is the updated iterative formula of the iterative ensemble Kalman filter.  

It was determined that the observed iteration of a traditional iterative ensemble Kalman filter 

algorithm was a Gauss-Newton iterative process. 

Due to the large spread of initial value deviations, as well as other factors during the process of 

data assimilation, the most recent iteration value was chosen as the final value in every iteration of the 

original IEnKF, and the new iteration’s result was considered to be closer to the expected value when 

compared to the former iteration. However, this method may reduce the convergent performance in 

certain applications [13].  

3   A Modified IEnKF scheme 

The Gauss-Newton iteration algorithm was found to have stronger local convergence. When the initial 

value was close enough to the optimal value, the convergence of the iterative sequences was ensured. 

During this process, the Newton step is always used for examining whether it is closer to the expected 

value by iterations. However, when the initial estimate is quite different from the expected value, the 

iteration of the Newton step may lead to a greater deviation from the expected value. In this study, 

through adding a step factor,  , the value of the step factor will adaptively adjust every iteration to 

ensure that each step of the iteration tends towards the expected. It has been proven that a Gauss-

Newton method with a step factor  presented a general convergence [14].  

To determine the step factor, the cost function J (x) was minimized with reference to search step 

factor i  along the Newton direction, enabling J (x) to be minimized along the Newton direction, and 

so on, as follows: 

0
( ) min ( )i i i i i

i
J J 


  x x                                                  (13) 

where )(/)( iii JJ xx  . Through solving Eq. (10), it was found that the multiple step factor   met 

the conditions, so it could be used to calculate ( )i iJ x , which corresponded to each   many times, 

and the   value was then taken to enable the ( )i iJ x minimum through comparison. Due to the 

multiple calculations for the status value, a large amount of calculating was consumed by this process 

in each iteration. When the data assimilation system showed higher requirements for real time, it 

would determine the step factor   according to the J (x) gradient descent direction. 

In regards to the use of the Newton step, once it approached the expected value, a super-linear 

convergence rate was achieved. In each iteration, it was necessary to test whether the current step 

reduced the error or not. If the answer was negative, back-tracking was conducted along the Newton 
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direction, until a step meeting the conditions was located. This step did not necessarily support the J(x) 

minimum in such a direction, but was the needed step to be able to make it decline. Because the 

Newton direction was downward for the J(x) direction, an acceptable step needed to be found in each 

of the back-tracking processes. Then, the following was obtained: 

1i i i  x x , 10   ,                                                        (14) 

The comparison between ( )iJ x and 1( )iJ x  was used to decide whether to choose the step factor 

obtained by the back-tracking. If inadequately met, the ( ) ( )J Ji+1 ix x  criterion could potentially lead 

to a failure in the convergence of the ( )J x  to the minimum in certain cases. As demonstrated by the 

experiments of this study, a simple method was determined to enable the average decline rate of the 

1( )iJ x  to at least reach  of 
T

iJ  •  (Press et al., 1988) as follows:  

1( ) ( ) 0 1T

i i iJ J J      •  x x                                     (15) 

In an actual situation, 410  should be realized. Meanwhile, according to the specific situation, the 

step factor should be as large as possible. Through the back-tracking step, the easiest way was to halve 

the step factor in each of the back-tracking processes. Only when  was approaching 1, could the 

super-linear convergence rate of the Newton iterative method be obtained. 

Based on the above global convergence strategy, it was determined that the Newton iterative 

algorithm may cause a larger norm of the system output value at the point of the new iteration value, 

under the local condition of not satisfying Newton’s lemma. For example, the new iteration value 

deviated more from the optimal value, which sometimes resulted in such divergence as 1( ) ( )i iJ J x x . 

Therefore, a Newton iterative algorithm with a global convergence strategy was used to solve this 

problem. If 1( ) ( )i iJ J x x , 1( ) / 2i i x x is taken as a new iteration value 1i
x  . If 1( ) ( )i iJ J

 x x , and 

1( ) / 2i i
 x x  is taken as the new iteration value 1i

x . Until the assimilation norm of the new iteration 

value was less than ( )iJ x , the value satisfying the conditions was assigned to 1ix  to satisfy the local 

conditions of Newton’s lemma in the next assimilation. However, multiple calculations were required 

for this method, which aggravated the burden of the calculation and affected the convergence speed so 

that the weighted average method could be used to improve the speed of the convergence. Table 1 

illustrates the algorithm: a modified iterative ensemble Kalman filter. 

 

Table 1: Algorithm: a modified iterative ensemble Kalman filter 

Require 
The forecast ensemble , 1,2,3......f

k Nx ｋ＝ , the observations y and error covariance 

matrix R  

1: Compute [ ( ) ]T f T TY y x  ~( ( ) ( ( ( )))
T

f T Tu h M   x x x
 

([ , ])diagσ P R )   

2: 
find the minimum 11

( ) (( ( ( ))
2

f TJ h M  x y x R  

1( ( ( ))) ( ) ( ))f f T fh M    y x x x P x x
 

3: compute the Newton step )(/)( iii xJxJ   

4: 
compute 1

0
( ) ( ) min ( )i i i i i i

i
J x J x J x 


  =  , to choose a proper step factor 

 
within

 
 0 1   

5: compute
1( ) ( )i iJ x J x  and 

1( ) ( ) T

i i iJ x J x J     • , 0 1   

6: 
if 1( ) ( )i ix J x Ｊ ,

1 1( ) / 2i i ix x x 
 

 
and if 1( ) ( )i iJ x J x

  , 

1 1( ) / 2i i ix x x 
   , ...., until 

1( ) ( )n

i iJ x J x  , 1 1

n

i ix x   
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Under certain local conditions, a Gauss-Newton iterative algorithm descends along the Newton 

direction. In regards to an IEnKF, if the norm of the new iteration assimilation result is greater than 

that of the previous assimilation result, it has been determined that both assimilation results become 

distributed on both sides of the optimal value absolutely. For example, when 1true  i ix x x  

and 1( ) ( )iJ J  ix x , the weighted average algorithm can be used. The new iteration value is made to 

return along the old iteration value direction, where the optimal solution is closer to the true value and 

can be obtained as the new iteration value. The comparison with IEnKF algorithm is as shown in 

Figure 1. 

i ( 1)i  ( 1)i  ( 2)i 

a

i

a

i

x

P





1

1

f

i

f

i

x

P









1iy

R





1

1

a

i

a

i

x

P









 propagate Innovations

modify

1

1

a

i

a

i

x

P









MIEnKF

IEnKF

2

2

f

i

f

i

x

P









MIEnKF

2

2

f

i

f

i

x

P









1

1

f

i

f

i

x

P









State variable

iterations

-th iteration -th iteration -th iteration -th iteration

 

Figure 1: Schematic diagram of IEnKF and MIEnKF algorithms. 

In Figure 1, the x-axis shows the number of iterations, while the y-axis indicates the state changes. 

The red dotted box indicates the specific process of using the MIEnKF for reducing the errors at the 

i+1-th iteration, when the i+1-th iteration value greatly deviates from the i-th iteration value. 

According to the gradient descent direction of the cost function, the step   is adaptively adjusted to 

make assimilation results eventually converge, and so on. So, the MIEnKF can better adapt to a 

strongly nonlinear system.  

4   Numerical experiments 

With different parameterizations and physical representations determining the sensitivity of the 

procedure of different models, observing system simulation experiments (OSSE) are designed to 

enable examination of the performance of data assimilation procedures [12]. In this section, the 

MIEnKF is compared with a standard IEnKF method, as well as a traditional EnKF method for 

research purposes. 

4.1 Low-dimensional chaotic system Lorenz-63 

A Lorenz-63 model is a three-variable chaotic dynamical system, of which the control equation of a 

state evolution can be given by the following ordinary differential equation: 

( )x y x

y rx y xz

z xy bz

 


  
  

                                                                 (16) 

In this study, the parameter values were set as follows: 10  , 8
3

b   and 28r  . In the numerical 

discrete method, a fourth-order Runge-Kutta method was used with the integral step of 0.01dt  , the 

total integration time S=1000, and the initial state of [1.508870; 21.531271; 25.46091]X  , which 

was a point in the state of the chaotic system. 

In this study, to verify the performance of the MIEnKF filter algorithm, a sensitivity experiment 

was used with different ensemble sizes, covariance factors, and observation frequency and analysis 
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cycle length. The following evaluation indices, named the root mean square error (rmse), were 

adopted: 

                                                      
1

21
( , )

T
true true truermse

n

 
   
 

x x x x x x                                  (17) 

where x  and true
x are the estimate and true value of the model state, respectively, and n is the 

dimension of the model state vector.  

4.2 Experimental results and analyses 

In this section, the assimilation performances of the IEnKF and MIEnKF are examined. For the same 

setup, the modified effects were found to be different. 

4.2.1 Influences of ensemble size. In the experiment, we changed ensemble sizes from N=5 to N=80; 

the model step T = 25 was selected, the inflation factor was set as infl = 1.05, and the observation error 

obeyed the Gaussian distribution with a mean of 0 and a variance of 
2 1obs  . Figure 2 shows the 

experimental results of the three methods. Due to the different domain of the values, we present the 

forecast-rmse and analysis-rmse in separate diagrams.  
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Figure 2: Influence of ensemble size on comparison of the three algorithms with forecast-rmse and 

analysis-rmse 

The research showed that: (1) with an increase of ensemble size, the performance of the three 

algorithms improved in agreement with typical results from the literature [1]. While the EnKF seems to 

improve with increased ensemble size, the IEnKF and MIEnKF show very little improvement. The 

larger the ensemble size, the better the assimilation effect. However, the assimilation time was 

correspondingly longer. (2) Among the three types of algorithms, the performance of the EnKF was 

found to be the least effective. In cases with a small ensemble size, the rmse was larger. The IEnKF 

was determined to have a slightly better performance than the EnKF. However, the modified MIEnKF 

was able to meet the demand of the actual assimilation more effectively, and the rmse was minimal. 

4.2.2 Influences of the inflation factor. An inflation factor is a type of error processing method for 

improving assimilation effects. If the inflation factor is changed, the performance of the different 

algorithms will change greatly.  

In this study, the results showed the following:  

(1) When the inflation factor was increased, three types of algorithms had diverse results, wherein 

the performance of the EnKF improved the most, the improvement of the IEnKF was not obvious, and 

no influence was made on the MIEnKF.  

(2) When the step of the inflation factor was equally reduced, it was found that the EnKF had the 

worst performance, and the rmse of the IEnKF decreased from 0.237 to 0.236, while no changes were 

made on the MIEnKF. Therefore, when combined with the performance curve diagram of the three 

algorithms, as shown in Figure 3, it can be confirmed that no matter what type of situation, the 

performance of the EnKF was the worst. For example, the rmse value of the EnKF presented multiple 
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peak-trough phenomena as the equal interval of the inflation factor increased or decreased. Therefore, 

it was particularly important to select the inflation factor. To focus on this problem, a genetic 

algorithm was used to select the optimal inflation factor from previous studies [1] and to obtain the 

optimal data assimilation results under limited computing resources.  

(3) When compared with the IEnKF, this algorithm was able to adapt well to the data assimilation 

of a strongly nonlinear system. In addition, when combining the algorithm performance variations 

caused by ensemble size changes, it could be seen that the rmse of the MIEnKF was smaller, and the 

same was found for the inflation factor. Therefore, the MIEnKF had a more robust performance than 

the IEnKF. 

1 1.05 1.1 1.15 1.2
0

0.2

0.4

0.6

0.8

1

rm
s
e

infl

 

 
EnKF

IEnKF

MIEnKF

 
Figure 3: Influence of inflation factor on data assimilation. 

4.3 High-dimensional chaotic system Lorenz-96 

In this section, to further detect the performance of the modified iterative ensemble Kalman filter, a 

Lorenz-96 model that had 40 state variables [11] was chosen. A Lorenz-96 system is a more complex 

nonlinear dynamic system, and it is used to simulate the time evolution of atmospheric variables. The 

equation is as follows: 

1 2 1( )
j

j j j j

dx
x x x x F

dt
                                                 (18) 

The discrete numerical experiments adopted a fourth-order Runge-Kutta method, 

where 1,2, ,j M represent the loop label, forcing parameters of 8F , and variables of 40M . 

The time step dt was taken as a 0.05 dimensionless unit fixed value. 

The performances were compared among the three methods (EnKF, IEnKF, and MIEnKF) by 

changing the observation error and the inflation factors. The ensemble size was set as N = 30, the 

observation variance as obs_var = 1, and the model step as T = 25. The inflation factor infl changed 

from 1.01 to 1.20 and was set at intervals of 0.01. Its performance in data assimilation was then 

observed. Figure 4 illustrates the observation error influence on the performance of the three 

algorithms’ assimilation.  
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Figure 4: Influence of observation error on data assimilation. 

In the experiment, the ensemble size was set as N = 30, the model step as T = 25, and inflation 

factor as infl = 1.05. The observation error, obs_var, ranged between 0.5 and 8, and the step size was 

0.5. The results confirmed that the modified algorithm could still finish with an accurate estimation, 

even when the interval between the observation errors was larger by contrast. In the early stages, the 

EnKF could basically meet the true state. However, great deviations appeared in later stages. The 

floating range of the IEnKF was relatively small, and therefore the assimilation performance was 

relatively poor because the analogue system error was larger. When combined with the previous 

analysis, the new method was found to have a greatly improved performance compared to the first two 

algorithms. 

In addition, in terms of computational costs, the average time for the EnKF was 18.25 s, while the 

average time of the IEnKF and MIEnKF were approximately 35.25 s and 44.5 s, respectively. We 

found that the MIEnKF needed a larger amount of calculation, which took longer; therefore, reducing 

the computation time while maintaining the premise of satisfying the estimation precision is still a 

subject for further study. 

5    Conclusions and further discussions 

In terms of a linear Gaussian system, the EnKF was the optimal algorithm for data assimilation. 

However, as the operational-scale models increase in resolution and complexity, nonlinearities pose 

greater problems to today’s most widely used data assimilation methods. These nonlinearities are 

particularly critical for determining the optimal assimilation method for a strongly nonlinear system. A 

MIEnKF was proposed in this study for the purpose of exploring narrating an IEnKF from the 

perspective of a Newton iteration and to determine the optimal iteration value by judging global 

convergence assimilation results. This iterative version of an EnKF is used to minimize the local (i.e., 

limited to on assimilation cycle) cost function and investigate the performance of such a scheme in a 

number of experiments withtwo common nonlinear chaotic models. The only difference between the 

MIEnKF method and the IEnKF method is the method of minimization: we used a Gauss-Newton 

derivation of the IEnKF. This is the reason the results of some experiments with the MIEnKF method 

are almost a straight line. Due to the OSSE setup for such synthetic experiments, “truth” is defined as 

when the model is integrated (run) for a set of initial conditions. “Observations” are generated from 

the “truth” by adding some type of noise. Assuming the error from the observations and forecast 

ensemble are ideal because of the applied minimization method, we can guarantee the assimilation 

performance is better than other methods. Meanwhile, when compared with the EnKF, the computing 

burden of the MIEnKF is increased with greater iteration numbers. Therefore, to satisfy the premise of 

estimation precision, a solution for reducing the calculation burden of the MIEnKF is an important 

direction for future study. 
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