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Abstract: The geostatistical approach has been studied for many year to identify the pollution 

source re-lease history in groundwater. We focus on the influence of observation error and hy-

draulic parameters on the groundwater pollution identification (PSI) result in the paper. Nu-

merical experiment and sensitivity analysis are carried out to find the influence of observation 

point configuration, error and hydraulic parameters on the PSI result in a 1D homogeneous aq-

uifer. It has been found out that if concentration observation data could accurately describe the 

characteristics of the real concentration plume at the observed time point, a nice identification 

of the pollution release process could be obtained. If the calculated pollution discharge process 

has good similarity with the real discharge process, the order of the observation error fell with-

in 10-6 and 10-3.5, the dispersion coefficient varies fells within -10% and 5%, and the actual 

mean velocity fell within ±2%. The actual mean velocity is the most sensitive parameter of the 

geostatistical approach in this case. 

1 Introduction 

In the recent twenty years, groundwater quality in some places of China is getting worse because of 

the industrial and living sewage, pesticide, leakage of petroleum tank and landfill yard. According to 

the survey of shallow groundwater in 118 cities in China, 97.5% cities’ groundwater was polluted, and 

40% was serious polluted[5]. It is very important to protect groundwater so as to assure the sustainable 

development and survival safety. However, groundwater pollution is difficult to be perceived, and the 

pollution source is hard to be identified. Pollution source identification (PSI) refers to reconstructing 

the pollution source locations and releasing histories from observed concentration records [12]. As one 

of the first steps in environmental remediation project, PSI can be classified into three typical types 

[8]: namely, finding the release history of a source, finding the location of a source, and recovering the 

initial distribution of a contaminant plume. The PSI is helpful to making a cost-effective remediation 

strategy, partitioning the cleanup cost among liable parties [10].  

The mathematical and simulation approaches of pollution source identification has been extensive-

ly investigated in the past thirty years. Atmadja & Bagtzoglou [1] have subdivided the existing math-

ematical methods into four major groups, namely optimization, analytical and direct methods as well 

as probabilistic and geostatistical approaches. Snodgrass & Kitanidis [11] used a probabilistic ap-

proach combining Bayesian theory and geostatistical techniques to estimate the pollution source func-

tion. The method is an improvement from some other methods in that the solutions are more general 

and make no blind assumptions about the nature and structure of the unknown source function. Limita-

tion to this approach is that the location of the potential source must be known a priori. Butera & 
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Tanda [2] use the method to find the source function in a 2D problem. Michalak & Kitanidis [7] com-

bine the method with the adjoint state method to identify the source function in a 3D problem. Butera 

et al. [3] extend the method to find both the source function and location. Though this method is give 

extensively studied, most of these researches give their attention on the theory, the influence of obser-

vation error and hydraulic parameters on the PSI result are seldom discussed.  

In this paper, we give our attention on the influence of observation error and hydraulic parameters 

on the PSI result when the geostatistical approaches is used to find the source release history in a 1D 

homogeneous aquifer. Numerical experiment and sensitivity analysis are carried out to find the influ-

ence of observation point configuration, error and hydraulic parameters on the PSI result. 

2 Theory of Geostatistical Approach 

Snodgrass & Kitanidis [11] used the geostatistical approach to estimate the pollution source release 

history in a simple 1D homogeneous aquifer. The pollution source release history was taken as an un-

known function which is represented as a random process because there was uncertainty associated 

with the function and its true value may never be found. The set of all possible functions that fit the 

data were consistent with additional information. Each of these function was assigned a probability 

that it was the solution. The expected value of this set was sought as a best estimate along with its co-

variance as a measure of the estimation uncertainty. 

2.1 Geostatistical model 

The estimation problem could be expressed as: 

 z Hs v  (1)

 
Where z is an m×1 vector of observations. H is a known sensitivity matrix assembled by transfer 

function. s is an n×1 “state vector” obtained from the discretization of the unknown function that we 

wish to estimate. The measurement error is represented by the vector v which is assumed to have zero 

mean and known covariance matrix R. The expected value and covariance of s could be expressed as 

equation (2) and (3). 

 E s Xβ  (2) 

    
T

E    
 

Q s Xβ s Xβ           (3)
 

Where X is a know n×p matrix and β are p unknown drift coefficients. Q(θ) is a Gaussian function 

of unknown parameters θ. 

2.2 Estimation procedure 

The estimation procedure is divided into two parts. First the optimal structural parameters θ are found, 

and then the unknown function s is estimated. The structural parameters θ are estimated by maximiz-

ing the probability of the measurements given θ: 

 
1 21 2 1 11

| exp
2

T T Tp z 
   

  
 

Σ X H Σ HX z Ξ z  (4) 

T Σ HQH R                     (5) 

 
1

1 1 1 1T T T T


    Ξ Σ Σ HX X H Σ HX X H Σ  (6) 

Maximizing p(z|θ) is equivalent to minimizing 
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  1 11 1 1
ln ln

2 2 2

T T TL     Σ X H Σ HX z Ξ z  (7) 

The minimization can be achieved by taking derivatives of L(θ) with respect to θ and setting them 

to zero. Gauss-Newton iterations is used to find the minimization. When the iteration converge, Q(θ) 

is known and solve the system 

  0

T

T T

     
     
     

Σ HX HQΛ

XMHX
 (8) 

Where Λ is a m×n matrix of coefficients and M is p×n matrix of multipliers. The best estimates of 

the function s and its covariance are 

ˆ s Λz  (9) 

T T   V XM Q QH Λ  (10) 

2.3 Nonnegative constrain 

The method does not enforce the nonnegativity of concentration. A transformation of the concentra-

tion is used to assure the nonnegativity of concentration. Define 

 1 1 s s  (11) 

The equation (1) in the transformed space becomes 

    


      
 

z h s v h s v  (12) 

Then the transfer function  h s  is not linear with respect to the transformed unknown s . The 

best estimate of s can be found by the quasi-linear procedure [6, 11] and could be expressed as 

ˆ l






 
  
 

s
s  (13) 

3 Numerical Case and Experiment Plan 

3.1 Numerical case 

The advective and dispersive transport of a conservative solute in a 1D homogeneous aquifer [10] is 

taken as an example problem to discuss the influence of observation point configuration, error and hy-

draulic parameters on the PSI result. The problem could be expressed as 

2

2

C C C
D v

t xx

  
 

 
 (14) 

   ,C x T g x  (15) 

 0, 0 0C t t T    (16) 

 , 0 0C t t T     (17) 

Where C is the pollutant concentration, D is the dispersion coefficient (D=1), v is the actual mean 

velocity (v=1), x is the transport distance (  0,300x ), t is time. 
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The analytical solution of the 1D problem is 

     
0

, ,
T

C x T s f x T d     (18) 

 
 

  
 

2

3
, exp

42
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D TD T




 

  
   

   

 (19) 

Equation 20 shows the true release history (Fig. 1). There are 25 observation points in the x direc-

tion and the curve of observed concentration z at t=300 is shown in Figure 2. The covariance of the 

measurement errors is expressed as R=σ2
RI (σ2

R=1×10-12). The Q is expressed as equation (21). 

 
     
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(20) 
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 (21) 
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Figure 2 observation location and observed concentration at t=300 

3.2 Numerical experiment plan 

(1) The influence of observation point configuration on PSI 
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The complexity of PSI problems depends on the amount of observations available and the number 

of system inputs that must be determined [9]. The amount and configuration of observation points de-

cided by the capital and location are the base to obtain the available observation date for PSI. It is 

helpful for designing observation point to analyze the influence of amount and configuration. To find 

the influence of observation amount on PSI, different amount observation points are set in the x direc-

tion within (0, 300]. Then the size of observation zone and observation point location are discussed by 

setting the same amount of observation points in different size of observation zone, and moving the 

observation zone in the x direction within (0, 300]. 

(2) The sensitivity of observation error 

As a kind of ill-posed problem, the solution of PSI may do not satisfy the general conditions of 

existence, uniqueness, or stability. The ill-posed problems are extremely sensitive to errors in data, so 

small errors in the measurement of the existing plume may drastically change the calculated plume 

history [10]. It is helpful to analyze the sensitivity of observation error for finding the proper error 

scope which could not affect the estimate of release history extremely. Snodgrass & Kitanidis [10] set 

the covariance of the measurement errors as R=σ2
RI (σ2

R=1×10-12). We discuss the sensitivity of ob-

servation error by increasing σ2
R from 10-12 to 10-1.  

(3) The sensitivity of dispersion coefficient 

Contaminants in groundwater are transported by the following three processes: advection, me-

chanical dispersion, and molecular diffusion. Mechanical dispersion and molecular diffusion collec-

tively are referred to as hydrodynamic dispersion which could be obtained by in situ experiment [4]. 

Many researches obtain the dispersion coefficient by numerical model calibration [13]. Both in situ 

experiment and numerical model calibration cannot avoid the error or uncertainty which might bring 

disturbance in the PSI result. In the numerical case of Snodgrass & Kitanidis [11], the dispersion coef-

ficient D is assigned the value 1. We analyze the sensitivity of dispersion coefficient by changing D 

within ±15%. 

(4) The sensitivity of actual mean velocity 

Advection is a result of the large-scale gradients in fluid head and it is most significant mass 

transport process. The velocity of groundwater is described by the actual mean velocity of the water 

movement through the pores of the soil. The observation error and model uncertainty could be brought 

in the PSI result, when the experimental or numerical method is carried out to estimate the actual mean 

velocity. Snodgrass & Kitanidis [11] assigned v the value 1. We analyze the sensitivity of v by chang-

ing it within ±15%. 

3.3 Index for evaluating the sensitivity 

The linear correlation coefficient and width of confidence interval are taken as the index for evaluating 

the sensitivity of observation error, dispersion coefficient and actual mean velocity. The linear correla-

tion coefficient r calculated as equation (22) shows the similarity of the calculated release history cal 

and the real release history Rea. When the r approximates 1, the cal is more similar with the Rea. The 

width of confidence interval shows the uncertainty of calculated release history based on the observa-

tion data and model parameters. The Euclidean distance de between the up and low bound (σu and σl) 

of the 95% confidence interval is used to evaluate the confidence interval (equation 23). The sensitivi-

ty βi of the ith parameter ai on the index I is expressed as equation (24), Δai is the change of the pa-

rameter ai. 

  

   

1

2 2

1 1

n

i i

i

n n

i i

i i

cal Rea Rea Rea

r

cal Rea Rea Rea



 

 



 



 

 (22) 
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2
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de u l 
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   (23) 

      i i i i

i

i i

I a a I a I a

a a


  



 (24) 

4 Discussion 

4.1 Configuration of observation points 

Throughout the numerical case, we find that when the amount of observation points increase, r ap-

proximates 1 and de approximates 5.44 (Fig. 3a). The concentration information provided by less ob-

servation points cannot express the accurate pollution plume at t=300 (Fig. 4), so the PSI result de-

pended on these information cannot describe the real release history. When the amount of observation 

points increase, the calculated history approximates the real history. When the number of observation 

points equal 25, the concentration information provided by observation points can accurately express 

the pollution plume at t=300. Then it is helpless to improve the PSI result by increasing observation 

points. It means 25 observation points could provide enough concentration information for identifying 

the release history in the case. 

We set 25 observation points in different observation zones of different width, and each observa-

tion zone moves from x=0 to x=300. The PSI results of different zones are shown in Figure3b. To keep 

the figure clear, we draw the curve of r and de corresponding to the width of 25, 100, 150, 200 and 

300. Figure 3b shows that when the width of observation zone is narrow, the concentration infor-

mation provided by observation points cannot express the accurate pollution plume at t=300. The nar-

rower the width is, the bigger the deviation between the calculated and the real release history is. The 

peak and valley of the curve are the important information to decide the characteristic of the pollution 

plume at t=300. If the narrow zone can provide the concentration information of these peak and valley, 

it could obtain a better PSI result than the zone lost these peak and valley does. So the accuracy of a 

recovered plume history strongly depends on the accuracy of the characterization of the current 

plume(Skaggs & Kabala 1994). 
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Figure 3 The influence of configuration of observation point on the r and de 
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Figure 4 The location of different set of observation points and the interpolated concentration curves 

4.2 Configuration of observation points 

Snodgrass & Kitanidis [11] set σ2
R equals 1×10-12, and obtained a perfect PSI result. We take 1×10-12 

as a datum to evaluate its influence on PSI. Figure 5 shows that when σ2
R increases, the PSI result gets 

worse. If the σ2
R is bigger than 10-8, the PSI result get worse rapidly, and the peak of calculated history 

become lower. 

The order of the detection limit is not less than 10-7 usually, so the order bigger than 10-7 makes 

sense. σ2
R controls the covariance of the measurement errors. When σ2

R equals 10-12, the order of z is 

10-6. It means a perfect PSI result could be obtain when the order of observation error is 10-6. If the σ2
R 

increases to 10-7, the observation error equals to 10-3.5. The r drops down -0.28%, and the de increases 

10.24%. Then the calculated history gets a moderate similarity with real history (Fig. 6). When σ2
R 
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equals 10-6, the order of the error of z is 10-3, the r drops down -0.90%, and the de increases 30.77%. 

However, the peak during the concentration curve is different from the real history.  
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Figure 5 The sensitivity of observation on r and de 
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Figure 6 The calculated under different σ2R and the real release history 

4.3 Dispersion coefficient 

When the D increases from -15% to 15%, the r changes from -35% to 5%, and the de changes from -

15% to 65% (Fig. 7). Then at the most of time, the r is bigger than 0.9, and the de is smaller than 7 

(Fig. 8). However, the peak at t=150 disappears, and a strange peak appears at t=240. When the D in-

creases, the concentration curve peak increases. When the D decreases, the concentration curve peak 

decreases too. Small de tells that the uncertainty decreases based on the known pollution concentra-

tion. However, small uncertainty does not mean the calculated release history approximate the real his-

tory, because the model parameter might be not accurate. 
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Figure 7 The sensitivity of r and de to D 
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Figure8 The calculated under different D and the real release history 

4.4 Dispersion coefficient 

When the v increases from -5% to 5%, the r changes from -40% to 0%, and the de changes from -10% 

to 10% (Fig. 9). If the v is smaller than the real actual mean velocity, the peak and valley of the calcu-

lated release history curve appear earlier than the real release history. If the v is bigger than the real ac-

tual mean velocity, the peak and valley of the calculated release history curve appear later than the real 

release history (Fig. 10). If the v changes within ±2%, the calculated history is similar with the real 

history, but if the v fell out of this scope, the similarity becomes worse because the peak and valley 

might be far different from the real history. When the v changes within ±5%, the de decreases to 5, 

while the v increases. Small de tells that the uncertainty decreases based on the known pollution con-

centration. However, small uncertainty does not mean the calculated release history approximate the 

real history, because the v might be not accurate. 
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Figure 9 The sensitivity of r and de to v 
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Figure 10 The calculated under different v and the real release history 

4.5 Sensitivity of parameters 

The σ2
R related to the observation of the pollutant concentration controls the covariance of the meas-

urement errors, it is the external cause which could influence the PSI effect of the geostatistical ap-

proach. The D and v are the intrinsic factors of the equation that describes the pollutant transportation. 

Figure 11 shows the sensitivity of r and de to σ2
R, D and v. The sensitivity could be negative and the 

orders are so different, we have to use a semilogarithmic coordinate like Figure 11 to show the sensi-

tivity of these parameter clearly. When these parameters change within ±6%, the v is the most sensi-

tive parameter for r. When these parameters change within ±5%, de is sensitive to v and D. If the 

change goes beyond this scope, the sensitivity of de to v increases rapidly. In the well-posed transpor-

tation calculation, if the convection calculation can describe the real transportation well, the dispersion 

could be minority [13], that means the v is very important part of pollutant transportation calculation. 

As a typical ill-posed problem, tiny turbulent could lead to a notable diversity of PSI result, so both 

the r and de are sensitive to v. 
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Figure 11 The comparison of sensitivity of r and de to σ2

R, D and v 

5 Conclusion 

(1) The accuracy of a recovered plume history strongly depends on the accuracy of the characteriza-

tion of the concentration distribution at the final time spot. The aim of setting the number and configu-

ration of observation points is obtaining the accuracy concentration distribution at the final time spot. 

(2) When the σ2
R changes within 10-12 and 10-7, the order of observation error changes within 10-6 and 

10-3.5, the calculated history gets a moderate similarity with real history. (3) When the D changes with-

in -10% and 5%, the calculated release history approximate the real history. (4) When the v changes 

within ±2%, the calculated history has good similarity with the real history. (5) The σ2
R is the external 

cause of PSI problem, while the D and v are the intrinsic factors, the v is the most sensitive parameter 

of the PSI problem. 
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