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Abstract: It was proved that the acoustic agglomeration technology has a good application 

prospect in the removal of fine particles. In this paper, a removal system of acoustic 

agglomeration is constructed by the acoustic resonance structure. With the finite element 

simulation model, the effect and condition of sound pressure level (SPL) increment of high 

intensity sound in the resonance structure are defined. In the experiment, the contrast of the 

sampling weight and particle size distribution changes of fine particles was compared under 

different operating conditions to examine the effect of acoustic agglomeration on the removal 

efficiency of fine particles. The results show the SPL increment of 10dB is obtained with SPL 

145-165 dB when the working frequency is changed from 400 to 2000 Hz. Under the action of 

acoustic agglomeration, fine particles in the aerosol were significantly reduced, and the 

removal effect is markedly improved with the increase of SPL. 

1. Introduction 

In recent years, the fine particles, mainly PM2.5, have become the main pollutant of urban 

atmospheric in China 0. In the current air pollution control, it is urgently necessary to develop 

industrial scale fine particles emission reduction technology for the combustion energy system. The 

removal method based on the acoustic agglomeration principle has a good application prospect, due to 

its short working time, significant effect, easy to use, and high temperature, high pressure and 

corrosive prevention. However, the complex mechanism of acoustic agglomeration, lack of 

high-power and high intensity sound source and high energy consumption are the three major 

bottlenecks in the practical application of the acoustic agglomeration technology 0. 



2

1234567890

(ICEST 2017) IOP Publishing

IOP Conf. Series: Earth and Environmental Science 78 (2017) 012001    doi   :10.1088/1755-1315/78/1/012001

 

There have been many theoretical and experimental works on acoustic agglomeration0, but most of 

their experimental platform is bulit on imitative conventional dust removal devices combined with an 

acoustic agglomeration system. Furthermore, the results are not totally consistent because of the 

complex mechanisms and different experimental conditions. Zhou etc. 0used sound wave to work on 

conventional dust removal devices and found that the optimized sound frequency and SPL were 1.4 

kHz and 142dB. Gallego0compared the effect of 10 kHz and 20 kHz sound wave on flue gas 

generated by a coal-fired fluidized bed and proved that 20 kHz sound source was better than 10 kHz 

for agglomeration.Wang Jie0compared high-frequency (1 kHz and 20 kHz) acoustic wave with 

low-frequency (0.5~3 kHz) acoustic wave and found that low-frequency acoustic wave did better than 

the high one working on coal fired flue gas. Although there was no common view on the optimized 

conditions because of the varied investigated operating conditions, overall the works proved the effect 

of sound wave.  

However, few works have been done to indicate the positive effect of sound wave with the 

professional dust removal equipment based on strong sound system, which is exactly closely related to 

the actual industrial application.Conventional acoustic agglomeration tests are usually carried out in 

plane traveling wave or standing wave condition. The existing experimental results show that the 

acoustic agglomeration efficiency of the polydisperse aerosols for the industrial flue gas normally has 

the optimal agglomeration frequency, and the agglomeration efficiency is significantly enhanced with 

the increase of SPL. Therefore, replacing the constant section traveling wave/standing wave tube by 

the acoustic resonance cavity0, and as the acoustic resonance frequency is equal to the optimal 

frequency, the removal of fine particles under the condition of acoustic structure resonance can reduce 

the sound power consumption at the premise of keeping high reduction efficiency. 

2. Experimental Platform  

Figure 1 shows the test system of acoustic agglomeration of fine particles based on acoustic resonance 

structure. The system consists of a standing-wave tube, which is composed of thin tube and square 

tube in series, where the cross-section dimension of square thick tube is 0.3 m with its length 0.5 m, 

and the cross-section length of thin one (condensed tank) is 0.1 m with its initial length 1.5 m. The thin 

tube is connected with the piston (changing the variable position) to adjust the length of the tube, and 

then change the resonance frequency of the standing wave tub. The standing wave tube is driven by 

four electro-acoustic unit, which is connected with the thick tube. Electro-acoustic unit is composed of 

150 W, 400-5000 Hz compression driver and conical horn. Inlet and outlet diameters of the horn are 

0.05 m and 0.1 m respectively, and its length is 0.2 m (Dip angle is approximately 7 deg.). The 

frequency and intensity of sound wave are regulated by a signal generator and power amplifier. The 

amplitude of driving current of a single sound source is 3 A at full capacity. 

Compared with commonly used constant section standing wave tube, the two-stage standing-wave 

tube with abrupt varying section can be used to improve the effect of acoustic agglomeration in the 

thin tube from two aspects: (1) one end of the thick tube is allowed to connect more compression 

drivers to provide higher input power. (2) The standing-wave tube with abrupt varying section is a 

kind of dissonant standing-wave tube, i.e., the high order resonance frequency is unequal to an integer 

multiple of the first order resonance frequency. Therefore, under the condition of the structural 

resonance and the high intensity acoustic field, the nonlinear distortion of the acoustic wave is lower, 

and sound saturation and shock wave will not occur generally. 
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Figure 1. .Acoustic agglomeration system. 

 

According to the waveguide theory, the cut-off frequency of acoustic agglomeration chamber with 

length of 0.1m is 1715 Hz, which can cover the effective frequency band (400-1500Hz) for acoustic 

agglomeration of fine particles. According to the law of quarter wavelength, the adjustable piston 

stroke is 0.5 m, which is more than half wavelength and in the adjustment range of the resonance 

frequency in the working frequency band. 

The input gas to the agglomeration chamber is generated by the SAG-410 Topas aerosol generator, 

and the range of mass concentration is 0.012-13 g/m
3
. When the gas is mixed with the compressed air, 

the range of gas volume flow is 7.2-18 m
3
/h, and the range of corresponding action time by high 

intensity acoustic wave is 3-7 s. Three B&K 4941 high intensity acoustic microphones, 0#, 1# and 2#, 

are installed uniformly along the thin tube, which locate at point of the 0.5 m long tube, respectively. 

0# is near the end of the adjustable piston, and the 2# is near the end of the sound source. The acoustic 

microphones are connected with the B&K 3050 data acquisition system to obtain the acoustic signals 

of measuring point. A particle size spectrometer is installed at the gas outlet of agglomeration chamber, 

which is used to measure the particle size distribution characteristic of the particles with and without 

the sound waves, and to complete the sampling of fine particles. The flue gas outlet is connected with 

a fine particulate sampling instrument, and the particle size of the sample is collected ranging from 2.5 

to 10 μm by sampling membrane filter. 

3. Strong Sound Field Characteristics  

3.1. The Time Domain Signal and Frequency Response 

Using the frequency domain acoustic module of Comsol Multiphysics, the acoustic field distribution 

in the experimental system is calculated. The results show that three high order resonance frequency of 

the system is 1570 Hz, 1510 Hz and 1420 Hz respectively. The SPL of agglomeration chamber is 

lowest when the frequency is 1550 Hz. When the structure resonance occurs, the SPL in the thin tube 

is above 10 db comparing with that in the thick tube. The internal acoustic field distribution at the 

frequency of 1420 Hz is shown in Figure 2.(a), it can be seen that there is a plane standing wave 
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acoustic field in the agglomeration chamber, and the acoustic field distribution is very inhomogeneous 

in the thick tube, and sound intensity of thin tube (see Figure 2. (a)) is obviously higher than that of 

thick tube (see Figure 2. (b). A similar standing wave acoustic field is observed at the other two 

resonance frequencies. 

 

（a）1420Hz                      （b）1550Hz 

Figure 2. Acoustic field distribution under the resonance condition. 

 

 

（a）0#                          （b）1# 

Figure 3. The RMS SPL of every measuring points at different frequency and sound intensity. 

 

Figure 3 shows the RMS sound pressure level of 0# and 1# monitoring point close to the adjustable 

piston at different frequency and intensity of the sound source. It can be seen that under the effect of 

standing wave field, the SPL fluctuations within the working frequency band of compression driver 

increased significantly. The SPL is highest when the frequency is 700 Hz, and is increased by more 

than 10 dB compared with the results of single source driver, which indicates that phase congruency of 

different sound source is better. When the drive current of compression driver is changed from 20% to 

80%, the frequency response curve shape and the increase amplitude of SPL basically exhibits no 

change. When the agglomeration effect is efficiently in the range of 400 - 1500 Hz, the loudest level is 

as high as 150-165 dB. Compared with the results of Figure 2, the peak value of sound pressure 

frequency response at fixed monitoring point could not reach the maximum sound pressure level of the 
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agglomeration cabin. At the same time, because the structural resonance frequency is not chosen as the 

measurement frequency, the measurement results of Figure 3 are lower than the actual intensity of the 

acoustic agglomeration process. 

3.2. Resonance Frequency and Harmonic 

Resonance frequency of the standing-wave tube with abrupt varying section is determined by the 

length and sectional area of thick tube and thin one, adjusting individually the length of agglomeration 

chamber can make the resonance frequency be consistent with the sensitive frequency of acoustic 

agglomeration. When the position of adjustable piston is changed, the resonance frequency of standing 

wave tube will change, and the relative position of the measuring point in the sound field also changes. 

    

(a) 600Hz                                (b) 1400Hz 

Figure 4. The RMS SPL of every measuring point when the adjustable piston position is changed and 

the driving current is 40%. 
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(a) 600Hz                               (b) 1400Hz 

Figure 5. The RMS SPL of measuring point 2 when the adjustable piston position is changed and the 

driving current is 40%. 

 

Figure 4 shows the change of SPL of measuring point when the piston position is changed and the 

amplitude of driving current at full capacity is 1.2 A. When the frequency is 600 Hz, SPL of the 

measuring point in the curve reaches a maximum value, which is higher than the SPL measured at the 

initial position of piston. The data of measuring point 0# and 2# are basically the same, and the time 

moment of the maximum SPL of 0# and 2# is different with that of 1#. When the frequency is 1400 

Hz, because the piston stroke is greater than the acoustic wavelength, the SPL periodically changes 

over time. The time moment of the maximum SPL at different points is different. Similarly, the 

maximum SPL is higher than that of the initial position of the piston.  

Figure 5 shows the change of spectrum over time at 1#when piston position is changed and the 

amplitude of driving current at full capacity is 1.2 A. It can be seen that the main energy appears at the 

fundamental frequency, at the same time, there is an obvious high order harmonic, where harmonic 

component becomes more significant when the SPL is higher. 

The maximum SPL of each test point driven by single sound source (fixed piston) or 4 sound sources 

(fixed and adjustable piston) are shown in Figure 6 It can be seen that the SPL driven by 4 sound 

sources is 10 dB more than that by the single source, and the phase congruency of different sound 

sources is better. Moving the piston to a proper position, the effect of resonance will occur from 4 

acoustic sources, which improve the loudest SPL level. The intensity of the acoustic signal recorded 

under the fixed piston and fixed measured point condition is actually less than the intensity of the 

acoustic wave in the process of the acoustic agglomeration. 

 

（a）0# 

 

（b）1# 

Figure 6. The RMS SPL at fixed and mobile piston measuring point when the driving 

current is 40%. 

 

4. Fine Particle Coagulation Results 

The effect of acoustic agglomeration varies with the frequency and intensity of sound waves. Figure 7 

shows the change of mass of PM2.5 in the flue gas under different frequency sound waves. The PM2.5 

concentration in the initial distribution of flue gas is 49.64 mg/m
3
, and the agglomeration effect of fine 
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particles in the high intensity acoustic field is obvious. When the frequency is lower, the content of 

fine particles in the flue gas is higher, while that in the range of 1000 - 1300 Hz is the smallest. 

However, when the frequency is further increased, the content is increased. That is, for flue gas 

generated by coal-fired fly ash, the optimal frequency for sound agglomeration is in the range of 1000 

- 1300 Hz. 

 

Figure 7. Variation of PM2.5 mass concentration in flue gas under different frequency sound waves. 
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Figure8.Variation of particle size distribution 

(mass) of particles in flue gas by 600 Hz, 1100 

Hz and 1400 Hz sound waves. 

Figure9.Variation of particle size distribution 

(quantity) of particles in flue gas by 600 Hz, 1100 

Hz and 1400 Hz sound waves. 

 

Figure 8 and Figure 9 give the variation of the mass and the number of different size particles in the 

flue gas under the action of 600 Hz, 1100 Hz and 1400 Hz, respectively. It can be seen that there are a 

large number of fine particles in the initial distribution of flue gas, and the particle number distribution 

showed a typical bimodal structure. There are more numbers of particles with about 6 μm in size, and 

the most numbers of particles with about 0.5 μm and 2 μm in size. In the results of the initial gas 

particle mass distribution, the weight of the particles about 10 μm and 2 μm in size are larger, and the 

particle weight of 6 μm in size is the largest. At the optimal frequency of 1100 Hz sound waves, the 

mass of particles below 5 μm in size decreased significantly, and the mass of particles above 10 μm in 
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size has a certain increase, which proves the effect of particles agglomeration is active. In the results 

of number distribution, the number of particles in the range of 0.5 to 2 μm in size decreases sharply, 

however, the number of particle 0.3 μm in size has a certain increase. In addition, under the actions of 

the sound waves at the frequency of 600 Hz and 1400 Hz, which are far away from the optimal 

frequency, the agglomeration effect of particles is significantly decreased. 

5. Conclusion 

In order to provide high efficiency and low energy consumption of removal system of fine particles 

based on the acoustic agglomeration technology, the acoustic resonance structure is designed based on 

the standing-wave tube with abrupt varying section, which replaces the conventional experimental 

system. The experimental tests and numerical computations are carried out to study the acoustic 

properties and the agglomeration process of fine particles. The following results were obtained: 

 In the range of the sensitive frequency (1000 Hz - 2000 Hz) of acoustic agglomeration of the 

fine particles, there are multiple resonance frequencies in the standing-wave tube with abrupt 

varying section, and the SPL increment of 10 dB is obtained when structure resonance occurs. 

In the range of frequency from 500 Hz to 2000 Hz, the SPL in the agglomeration chamber can 

reach 145 to 165dB. 

 The particle size distribution in the flue gas generated by the fly ash from the power plant is a 

typical bimodal structure. Under the action of high intensity sound waves within the measured 

frequency band, the mass of the particles below 5 μm in size is decreased significantly, and 

the mass of the particles above 10 μm in size has a certain increase. Especially at the sensitive 

frequency of 1100 - 1300 Hz, the mass aggregation of PM2.5 is decreased by more than 90%. 

 The acoustic energy in the agglomeration chamber appears at the fundamental frequency, and 

the harmonic components are reduced by the resonance of the acoustic wave in the standing 

wave tube. Shock wave caused by the nonlinear effect is not found in the experimental results. 

In the future, we shall connect our acoustic agglomeration system with the bag filters in the power 

plant to test the overall effect of removal of PM2.5 particles. 
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