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Abstract. Parameter identification method of equivalent circuit models for Li-ion batteries 

using the advanced tree seeds algorithm is proposed. On one hand, since the electrochemical 

models are not suitable for the design of battery management system, the equivalent circuit 

models are commonly adopted for on-board applications. On the other hand, by building up the 

objective function for optimization, the tree seeds algorithm can be used to identify the 

parameters of equivalent circuit models. Experimental verifications under different profiles 

demonstrate the suggested method can achieve a better result with lower complexity, more 

accuracy and robustness, which make it a reasonable alternative for other identification 

algorithms. 

1. Introduction 

Usage of rechargeable Li-ion batteries has aroused considerable attentions in a variety of industrial 

areas. Hybrid electric vehicles (HEVs), plug-in hybrid electric vehicles (PHEVs) and battery electric 

vehicles (BEVs) are the significant areas of applications of battery technology. Accurate monitoring of 

battery statuses and efficient management of battery power are presently the technique bottlenecks of 

these electrified vehicles. Generally speaking, to enable safe, reliable and efficient operations of the 

power batteries under the most demanding and grueling driving conditions, an effective battery 

management system (BMS) must be used [1]. This system is used to inspect the conditions and states 

of the power battery, such as state of charge (SOC) and state of health (SOH). However, since these 

states are usually immeasurable by any sensors, many model-based estimation methods are used to 

solve the problem [2-6]. It is pretty necessary to guarantee the accuracy of battery models in order to 

acquire a satisfied estimated result. Besides, it is also important to balance the model complexity and 

accuracy in purpose to ensure acceptable estimation result while reducing calculation in real-time [7]. 

In brief, these models should be accurate enough and has reasonable computational burden.  

The models can be categorized into two main types including electrochemical models and equivalent 

circuit battery models [8]. As with the former type, it is usually suitable for understanding the 

distributed electrochemistry reactions in the electrodes and electrolyte [9]. However, they typically 

deploy partial differential equations with a large number of unknown parameters, which remarkably 

increases the computation load. Efforts are made to simplify the structure of electrochemical models in 

some researches, but meanwhile several effects are ignored. Therefore, these electrochemical models 

are not desirable for real time battery management in electric vehicles.  

For the equivalent circuit battery models, they are often lumped models with relatively fewer numbers 

of parameters, thus being widely applied in impedance analysis [10], SOC estimation [11], charging 

control [12] and SOH prediction [13]. For example, Plett [14] proposed some lumped models, such as 
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the simple, zero-hysteresis, one-state hysteresis, combined, and enhanced self-correcting (ESC) 

models and the battery SOC is estimated by extended Kalman filter (EKF) through the proposed 

models. Among the different kinds of equivalent circuit models, the resistance-capacitance (RC) 

network based models are widely researched, including the first-order RC [15-17], the second-order 

RC [18] and the third-order RC [19] etc. Seaman et al. [20] have conducted a comprehensive review 

for different types of equivalent circuit battery models. Considering the balance of model complexity 

and accuracy, the second-order model is regarded to be suitable for most of the applications.  

However, the accuracy of circuit-based models is substantially sensitive to parameters, especially 

when dealing with some control-oriented problems which are essential in electric vehicle design, and 

thus making the identification of parameters very challenging. To be specific, the difficulty of 

parameter identification may due to: (1) The inconvenience of conducting EIS for frequency-domain 

identification; and (2) the high demand of accuracy and risk of trapping into local optimum of time-

domain identification. For the latter, the unknown parameters in the governing dynamic equations can 

be identified from time-domain experimental data [21]. The estimation result can be improved by 

applying a proper global optimum algorithm. There have been some researches in the literature for 

parameter identification of batteries. For instance, Ouyang et al. [8] applied the genetic algorithm (GA) 

and Ramadesigan et al. [22] used Gauss-Newton method, a Jacobian-based scheme, for the process of 

nonlinear optimization in their parameter identification efforts, by minimizing an objective function 

that presents the discrepancy between the model outputs and the experimental one. However, those 

classical optimization methods are hard to achieve a satisfied result with relative lower time consume. 

Thus a more efficient algorithm should be applied.  

In this paper, we focus on the parameter identification problem for the equivalent circuit models by 

using the tree seeds algorithm (TSA). Compared with other methods like Gauss-Newton method [22] 

and genetic algorithm [8], the tree seed algorithm (TSA) [23] has more advantages: (1) it does not 

require good initial values and gradient information and (2) it is proven to be more powerful to tackle 

with multiple mode functions. In order to achieve higher accuracy and lower time consume in 

parameter identification problem, the TSA is introduced. And then, the objective function based on the 

difference between the measured voltage and the estimated one is developed. Afterward, the improved 

algorithm is used to optimize the objective function and finally acquires the system parameters. The 

remainder of this paper is organized as follows. In section 2, we introduce the equivalent circuit 

battery models. In section 3, we elaborately illustrate the TSA. In section 4, the TSA is applied to 

parameter identification, and the comparison with genetic algorithm is presented. In section 5, some 

conclusions can be drawn.   

2. Battery modeling and parameter identification 

2.1.  Description of equivalent circuit model   

The equivalent circuit model used in this paper is shown in figure 1 [19], with a voltage source, an 

ohmic resistance and two pairs of RC networks in series. The battery dynamic and static performance 

can be simulated by the combination of these components. In this system, the voltage source is 

parameterized as a kind of nonlinear function of battery SOC and to express the open circuit voltage 

characteristic at different SOC. The two RC networks denote the time-dependent polarization and 

diffusion effects of the cell. The ohmic resistance is used to describe the instant voltage drop after an 

excitation current in the battery.  
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Figure 1. Battery equivalent circuit model. 

2.2. Parameter identification 

In the proposed method, we use the TSA to identify the ohmic resistance 𝑅𝑜ℎ𝑚  and polarization 

resistances 𝑅𝑠, 𝑅𝑙 and polarization capacitances 𝐶𝑠, 𝐶𝑙. 

By observing figure 1, the following equations can be acquired 

𝑢𝑜ℎ𝑚 = 𝐼𝑅𝑜ℎ𝑚                                          (1) 

                    𝐶𝑠
𝑑𝑢𝑠

𝑑𝑡
+

𝑢𝑠

𝑅𝑠
= 𝐼                                          (2) 

       𝐶𝑙
𝑑𝑢𝑙

𝑑𝑡
+

𝑢𝑙

𝑅𝑙
= 𝐼                                          (3) 

                   𝑢 = 𝑢𝑜𝑐𝑣 − 𝑢𝑜ℎ𝑚 − 𝑢𝑠 − 𝑢𝑙                                  (4) 

where 𝑢 is the battery terminal voltage, 𝐼 is the battery current, and  𝑢𝑜𝑐𝑣 is the open circuit voltage. 

𝑅𝑜ℎ𝑚, 𝑅𝑠, 𝑅𝑙, 𝐶𝑠, 𝐶𝑙  are the battery parameters which reflect the battery dynamic response and are 

needed to be identified. 𝑢𝑜ℎ𝑚 is the voltage drop on 𝑅𝑜ℎ𝑚 and 𝑢𝑠, 𝑢𝑙 are the voltages across the two 

RC networks.  

For further analysis, we apply discretization to the system and acquire:  

                          𝑢𝑘
𝑜ℎ𝑚 = 𝐼𝑘𝑅𝑜ℎ𝑚                                        (5) 

                     𝑢𝑘
𝑠 = 𝐼𝑘−1

𝑅𝑠

1+𝑅𝑠𝐶𝑠
+

𝑅𝑠𝐶𝑠

1+𝑅𝑠𝐶𝑠
𝑢𝑘−1

𝑠                                 (6) 

                     𝑢𝑘
𝑙 = 𝐼𝑘−1

𝑅𝑙

1+𝑅𝑙𝐶𝑙
+

𝑅𝑙𝐶𝑙

1+𝑅𝑙𝐶𝑙
𝑢𝑘−1

𝑙                                 (7) 

                     𝑢𝑘 = 𝑢𝑘
𝑜𝑐𝑣 − 𝑢𝑘

𝑜ℎ𝑚 − 𝑢𝑘
𝑠 − 𝑢𝑘

𝑙                                 (8) 

where k represents the time step and 𝑢𝑜𝑐𝑣  is a nonlinear function of SOC. The function can be 

linearized within a short time interval:  

               𝑢𝑘
𝑜𝑐𝑣 = 𝑎𝑘𝑆𝑂𝐶𝑘 + 𝑏𝑘                                       (9) 

According to the definition of SOC:  

                  𝑆𝑂𝐶𝑘 = 𝑆𝑂𝐶𝑘−1 − I
1

𝐶𝑁
                                   (10) 

where 𝐶𝑁 is the nominal capacity of battery and the time interval is chosen as 1s here. 

Define 𝑥𝑘 = [𝑢𝑘
𝑜ℎ𝑚 𝑢𝑘

𝑠 𝑢𝑘
𝑙 𝑆𝑂𝐶𝑘]𝑇  , 𝑦𝑘 = 𝑢𝑘 , A =

[
 
 
 
 
0 0 0 0

0
𝑅𝑠𝐶𝑠

1+𝑅𝑠𝐶𝑠
0 0

0 0
𝑅𝑙𝐶𝑙

1+𝑅𝑙𝐶𝑙
0

0 0 0 1]
 
 
 
 

, 

 B = [𝑅𝑜ℎ𝑚
𝑅𝑠

1+𝑅𝑠𝐶𝑠

𝑅𝑙

1+𝑅𝑙𝐶𝑙
−

1

𝐶𝑁
]
𝑇

, C = [−1 −1 −1 𝑎𝑘], D = [0 0 0 𝑏𝑘] ,  

then these equations can be rewritten in a standard form: 

𝑥𝑘 = 𝐴𝑥𝑘−1 + 𝐵𝐼𝑘                                      (11) 

𝑦𝑘 = 𝐶𝑥𝑘 + 𝐷                                         (12) 

Based on equation (11)-(12), the output of the system can be acquired.  

Here the current 𝐼 is the input of system, and terminal voltage 𝑦 is the output. The parameters in the 

system may intensively influence the input-output relation. Thus an efficient algorithm for high 

fidelity estimation is needed. For that, an objective function should be defined as below 

𝑍 = ∑ 𝑒𝑘
2𝑁

𝑘=1                                          (13) 
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where 𝑒𝑘 is the difference between the predicted output and the measured output of the model. And in 

this paper, the discrepancy of the voltage is used to build up the objective function, so it can be 

calculated as 𝑒𝑘 = 𝑦𝑘 − 𝑣𝑘 , in which 𝑦𝑘  is the predicted voltage at time step k and 𝑣𝑘  is the 

measured voltage. Then the heuristic algorithm, such as the tree seeds algorithm can be used to 

minimize the error and obtain the systematic parameters. 

3. Tree seeds algorithm 

This heuristic algorithm is actually proposed based on the natural phenomena of trees and their seeds 

[23]. In reality, trees usually spread to other places through their seeds. If assuming the place for these 

trees and seeds as a search space for the optimization problem, the location of trees and seeds can be 

regarded as feasible solutions for the problem. To acquire a location of one seed that would be 

produced from a tree is important for the optimization problem since this procedure contains the core 

of search. The implement of tree seeds algorithm is shown in figure 2.  

In this algorithm, the two update rules can be given as below, 

𝑆𝑖,𝑗 = 𝑇𝑖,𝑗 + 𝛼 × (𝐵𝑗 − 𝑇𝑟,𝑗)                           (14) 

𝑆𝑖,𝑗 = 𝑇𝑖,𝑗 + 𝛼𝑖,𝑗 × (𝑇𝑖,𝑗 − 𝑇𝑟,𝑗)                          (15) 

where 𝑆𝑖,𝑗  is jth dimension of ith seed that would be generated ith tree. Meanwhile 𝑇𝑖,𝑗  is the jth 

dimension of ith tree, 𝐵𝑗  is the jth dimension of best-so-far tree location, and 𝑇𝑟,𝑗 is the jth dimension 

of rth tree randomly picked from the colony size, 𝛼 is the scaling factor arbitrarily produced in range 

of [-1,1], besides i and r are different indices.  

To balance the search capacity of the proposed search modes, it can be controlled by a parameter 

called as search tendency (ST) in range of [0,1]. The higher value of ST offers a powerful local search 

and speed convergence while the lower value of ST renders slow convergence but strong global search. 

In brief, the exploitation and exploration abilities of the TSA are controlled by this parameter. 

In the beginning of operation with TSA, the tree locations (possible solutions for the optimization 

problem) are produced by utilizing equation (16) 

𝑇𝑖,𝑗 = 𝐿𝑗,𝑚𝑖𝑛 + 𝑟𝑖,𝑗 × (𝐻𝑗,𝑚𝑎𝑥 − 𝐿𝑗,𝑚𝑖𝑛)                        (16) 

where 𝐿𝑗,𝑚𝑖𝑛 is the lower bound of the search space and 𝐻𝑗,𝑚𝑎𝑥 is the higher bound, 𝑟𝑖,𝑗  is a random 

number produced for every dimension and location, in range of [0,1].  As with the seeds number it 

can be determined by the colony size (approximately between 10% and 25% of the colony size). The 

exact number of seed generation is utterly random in TSA. 

 
Initialize population 

and input measured voltage

Generate estimated voltage 
based on battery model

Fitness condition is 
statisfied?

Evaluate the tree location Decide the number of seeds

Generate tree seeds

Select the best seed and 
compare it with the tree

Selection of best solution

Optimum model parameters

SOC or SOH  estimation

TSA Algorithm

Y

N

 
Figure 2. Flow chart of tree seeds algorithm for parameter identification. 
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4. Verification and comparison 

In order to verify the identification result of the proposed method, a lithium nickel-manganese-cobalt 

oxide (LiNMC) cell with nominal capacity of 1600mAh is tested under different profiles. Here, the 

commonly used dynamic profiles DST and FUDS are chosen. The performance of the proposed 

method is evaluated by comparing the estimated voltage with the measured voltage. For further 

analysis, the statistic of voltage discrepancy such as MAE (the maximum absolute error) and RMSE 

(the root mean square error) are listed. Moreover, the identification result of genetic algorithm is 

attached for comparison.  

The current curve of DST test is shown in figure 3. The identification results of TSA and GA under 

DST are shown in figure 4. For clearer comparison, the error between estimated voltage and measured 

voltage of the two algorithms are presented in figure 5.  

  
       Figure 3. Current profile of DST test.          Figure 4. The measured voltage of DST test  

and estimation results of GA and TSA. 

 
Figure 5. Voltage errors of GA and TSA in the DST test. 

 

Similarly, the current curve of FUDS test is shown in figure 6. The identification results under FUDS 

are shown in figure 7 and figure 8. Table 1 lists the statistic results of identification under the two 

profiles. 
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The verification results illustrate that the proposed method has better performance in tracking the real 

voltage, compared with the classical genetic algorithm, thus the model accuracy can be improved.  

  
Figure 6. Current profile of FUDS test.         Figure 7. The measured voltage of FUDS  

                                  test and estimation results of GA and TSA. 

 
Figure 8. Voltage errors of GA and TSA in the FUDS test. 

 

Table 1. Comparison of MAE and RMSE in the different tests.  

Algorithm 
DST test FUDS test 

MAE(mV) RMSE(mV) MAE(mV) RMSE(mV) 

GA 10.73 2.47 16.58 4.35 

TSA 3.46 0.96 4.56 1.05 

5. Conclusion 

A parameter identification method based on tree seeds algorithm is presented. The sum of square of 

discrepancy between the measured and the estimated voltage is defined as the object function and the 

TSA is employed to find the optimum parameters by minimizing the function value. Experiment 

results show the superior performance of the proposed method over the classical genetic algorithm. 

The RMSE of the model is reduced by 61.1% under DST test and 75.9% under FUDS test. The 
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proposed method can not only improve the accuracy of the model, but also can be used for online state 

estimation. State variables like SOC and SOH can be estimated as one of the unknown parameters. To 

verify the practicability of the proposed method, the algorithm will be implemented to the real BMS in 

the future.  
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