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Abstract. Nowadays, the grid faces much more challenges caused by wind power and the 

accessing of electric vehicles (EVs). Based on the potentiality of coordinated dispatch, a model 

of wind-EVs coordinated dispatch was developed. Then, A bi-level particle swarm optimization 

algorithm for solving the model was proposed in this paper. The application of this algorithm to 

10-unit test system carried out that coordinated dispatch can benefit the power system from the 

following aspects: (1) Reducing operating costs; (2) Improving the utilization of wind power; (3) 

Stabilizing the peak-valley difference. 

1. Introduction  

With the improvement of public awareness of environmental protection, the penetration level of wind 

power generation and electric vehicles (EVs) have kept rapidly growing in recent years. According to 

the study [1], a high penetration of wind power may bring many challenges to the grid; besides, the 

unordered access to grid by a large amount of EVs could significantly impact the power system [2]. 

In this work, a model of coordinated dispatch was proposed. Then added it into the conventional Unit 

Commitment (UC) problem and solve it by bi-level particle swarm optimization algorithm. The outer 

level is based on Quantum-inspired Binary Particle Swarm Optimization (QBPSO) [3] to solve the UC 

problem; The inner level adopts conventional Particle Swarm Optimization (PSO) [4] to distribute the 

load between thermal units, simultaneously, calculate the accepted wind power and schedule EVs 

charging demand. According to the characteristics of QBPSO, this paper also proposed a novel mutation 

strategy to prevent the algorithm from falling into premature too early. 

2. Model of Wind-EVs Coordinated Dispatch 

2.1. Forecasting of EVs charging demand and wind power 

 
Figure 1. Forecasting of EVs charging demand and wind power  
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Figure 1 (a) shows the forecasted demand of EVs based on [5]. And according to  Ouammi’s work [6], 

taking the operating data of a certain wind farm in Northern China Power Grid as an example, the 

forecasted wind power curve is shown in figure 1 (b). 

2.2. Wind-EVs Coordinated Dispatch 

In this work, the forecasted wind power is regarded as a variable that can be scheduled. When discussing 

the grid’s ability of accepting wind power, first of all, it is necessary to examine whether the thermal unit 

ramp-rate can cover the fluctuation of the load and wind power. Second, research the relationship 

between the economic benefit that brought by wind power and the amount of the wind power that the 

grid accepted. The wind power acceptance region is bound to following constrains: 

 
, u,( ) ( )

G G
t t t t

d g g W L g g

g g

r u T P P r u T             (1) 
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where ,d gr  and u,gr  are decent rate and rising rate respectively of gth unit; 
t

WP  and 
t

LP  are 

the variation of the wind power and load respectively in tth interval; 
t

gu  is the status of ith unit in tth 

interval;
GC  means the variation of coal consumption caused by wind power; 

WC is the coal 

conserved by wind power. Constraint (2) narrows the region of the wind-power-acceptance which 

determined by constraint (1). When the accepted wind power exceed this region, the increased 
GC  

will counteract the 
WC , because the wind power will cause many uneconomical problems such as 

increasing reserve capacity and making the thermal units deviate from economic operation point [7]. 

The wind power acceptance region can be extended by scheduling EVs charging demand. In order to 

ensure a basic charging demand can be satisfied, for each time interval, we set 30% of the forecasted 

charging demand as basic demand, and the rest 70% as variable that can be scheduled. The strategy can 

be expressed as follows: 

 
, ,

t t t

EV EV base EV edP P P   (3) 

where 
t

EVP  is the EVs charging demand after scheduling; 
,

t

EV edP  is the variation according to the 

coordinated dispatch; EVs basic charging demand 
, ,30%t t

EV base EV preP P  ; 
,

t

EV preP  is the forecasted 

demand of EVs. 

Then, the total demand of EVs charging should obey constraint (4): 

 
,
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T T
t t

EV EV pre
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P P
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   (4) 

The total EVs charging demand after scheduling of all intervals shouled be equal to the total forecasted 

demand. 

3. A bi-level particle swarm optimization algorithm for solving unit commitment problems with 

wind-EVs coordinated dispatch 

3.1. Application of QBPSO to UC problem 

QBPSO adopts quantum-bit (Q-bit) to contain information, kind of like the chromosome encode mode 

in Genetic Algorithm (GA). And “Quantum Rotation Gate”, which is a more efficient way for particle to 

update itself, is introduced into QBPSO. Given that, all possible combinations of decision variables can 

be derived from a single representation. 

For a UC problem with T intervals and G thermal units, the outer-level particles should be initialized as 

a 1×T matrix as: 

 1 1 1 2 2 2

1 2 1 2 1 2[ , , , ]T T T

N N Gx x x x x x x x x x  (5) 

where (t-1)×G+g is the index of gth unit in tth interval.  

The generation for probability matrix and rotation angle adjustment is mainly based on [8]. 
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When to decide the value of the rotation angle, a linear-decreasing-weighted method is proposed by this 

work, this method can expand the searching space in prophase, and accelerate the convergence in final 

phase, just as follow: 

 
max max min

max

( )
k

k
        (6) 

where k is number of iterations; max  and min  can be found in table 1.  

3.2. Application of PSO to economic dispatch and coordinated dispatch 

3.2.1. Initialization.  

Corresponding to the outer level, the inner level particles should also be initialized as a 1×T matrix. For 

thermal units, their particles are defined as: 

 
1 1 1 2 2 2

1 2 1 2 1 2
[ , , , ]

T T T

N N N
p p p p p p p p p p  (7) 

The Initialization of the initial position for thermal-unit particles is mentioned in equation (18). 

 
1 2[ , , , ]T

wind wind windP P P  (8) 

 
, ,min( , )t t t

wind wind forecasted wind acceptedP P P  (9) 

Equation (8) is the initialization for wind power particles. The ,

t

wind acceptedP  in equation (9) is 

determined by equation (1) and (2). The initial positions for wind-power particles are set as the 

minimum value between the forecasted wind power and the margin of acceptance region in every 

interval, considered that the wind power has the highest priority to be put into the grid. 

The particles of EVs charging demand are initialized according to (10). The initial positions for 

EVs-charging-demand particles are set as the basic charging demand as mentioned in equation (3). 

 1 2[ , , , ]T

EV EV EVP P P  (10) 

3.2.2. Update.  

The inner-level particles share the same pattern of update. The equation is as follow:  

 1 1 2 2( ) ( )id gd

id id

id

v v c r P P c r P P

P P v

          


 

 (11) 

where   is inertia weight; 1c and 2c are acceleration constants; 1r  and 2r  are 

acceleration-weighted coefficient; idv  is the velocity of the particle, as its value gets smaller, the 

solution gets more accurate; idP , 
gdP and P can be replaced according to the type of particles. 

3.3. Objective function and constraints for UC problem with wind-EVs coordinated dispatch.  

 Objective function: 

 
, , , , 1

1 1

min [ ( ( ) (1 ))]
T N

i t i i t i i t i t

t i

u F P S u u


 

    (12) 

where ,i tu  is the ON/OFF status of ith unit in tth interval; iF  is the cost function of ith unit; iS  is 

the start-up cost of ith unit. 

 Constraints: 

 Generation limit constraint:  

 
,min , ,maxi i t iP P P   (13) 

 Ramp-rate constraint:  

 
, , 1di i t i t uir T P P r T       (14) 

 Minimum up-time/down-time constraints:  
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 Spanning reserve constraints: 
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 (16) 

 Load balance constraint: 

 
,

1

G
t t t

i t W EV L

i

P P P P


    (17) 

where ,miniP  and ,maxiP  are the minimum power and maximum power of ith unit respectively; ,i tP  is 

the output power of ith unit in tth interval; , 1

on

i tT   and 
, 1

off

i tT 
 are the continuous time of ON/OFF in t-1th 

interval respectively; min,

on

iT  and min,

off

iT  are minimum continuous time of ON/OFF of ith unit 

respectively; , -1i tu is the status of ith unit in t-1th interval;  /   is the coefficient of reserve for wind 

/ load.  

3.4. Some improvements on the algorithm 

 The advanced initialization for particles of thermal units  

The thermal units with a higher priority should bear the load as much as possible, and the unit should 

remain above its minimum rated power once it is decided to be put into operation. So, for all the units, its 

initial position can be initialized by: 

 min max min

()
[ (1 ) ( )]

t t g g g

g g

g rand
p x P P P

G


      (18) 

g is unit number after priority-ordering, and as g gets smaller, the priority of this unit gets higher, so 

the value of 
()

(1 )
g rand

G


  is more close to 1, then 

t

g
p  is close to its maximum rated power, and 

vice versa. After that, the particles of unit can be generated in a proper position which closed to the 

final solution. Obviously, this method can accelerate the convergence of the algorithm. 

 The Mutation Strategy in outer-level algorithm 

Applied with the concept of “mutation” in GA, a new evolution strategy can be modeled. According to 

the features of the 10-unit test system, unit 9 and 10 are regarded as base-load units and they are operated 

at full load in the most of intervals. So the “mutation” can be applied only to from unit 1 to unit 8. The 

procedures are demonstrated as follows: 

 To select a Q-bit with a certain probability. For example, if the 5th bit is selected, then calculate 

the total power can be provided according to the status of units from 5th bit to the final bit. 

 If the total power calculated by step (1) exceed the demand, then retrace step (1); otherwise, 

calculate the power shortage. 

 Selecting a certain Q-bit or few Q-bits before the 5th bit, set its/their value to 1, others are set to 

0. Examine if the units selected in step (3) can meet the shortage calculated in step (2). 

 Putting the new particle into inner algorithm. 

The mutation can not only change the value of a certain bit, but also change the evolution path for this bit. 

Different from the mutation in GA, the mutation here keeps the population diversity. The mutation can 

operated as many times as needed. If the fitness after mutation is better than before, then save this 

individual and put it into the next iteration; otherwise, try again or quit the mutation. If the algorithm 

gets no better results beyond continuous 100 iterations, the mutation strategy will be introduced 

automatically. 
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4. Case studies 

The proposed algorithm was programmed with Matlab and tested with 10-unit test system in 24-hour 

horizon. The parameters were set as table 1: 

Table 1. Parameters for the algorithm. 

Population 

size 

Maximum 

iteration max  min    1c  2c  1r  2r  

60 1000 0.05  0.01  1 [1,2] [1,2] [0,1] [0,1] 

 

According to the forecasted data, the penetration of wind power is 4.32%, and the penetration of EVs 

charging load is 8.15%.  

Figure 2 shows that the algorithm fell into premature since around 100th iteration. After the “mutation” 

proposed by this work, the algorithm continued the search in solution-space. The mutation procedure 

was introduced into the algorithm for the second time in around 300th iteration. The result proved that 

the “mutation” procedure can prevent the algorithm from falling into premature and improve the 

accuracy of the solution.  

 
Figure 2. The convergence curve of the algorithm 

 

The two vallies of wind acceptance region in figure 3 (a) are mainly because that the load has reached 

the peak, which led to the insufficient capacity for covering the fluctuation. After the coordinated 

dispatch, not only the acceptance region has been expanded, but also the actual wind power follow 

closely with the forecasted power, in other words, the utilization of wind power is improved, just as 

figure 3 (b) demonstrated. 

 

 
(a)                                       (b) 

Figure 3. Wind-acceptance region and accepted wind before/after coordinated dispatch 
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(a)                                       (b) 

Figure 4. EVs charging demand and equivalent load before/after coordinated dispatch 

 

Moreover, the superposition of power demand on account of the participation of EVs charging is no 

longer severe as before, because that the coordinated dispatch can smooth the load curve to reduce 

frequent output-adjustments between thermal units. The curve of EVs charging demand and equivalent 

load before/after coordinated dispatch are shown in figure 4 . 

Figure 5 demonstrates the results of unit commitment problem and the generation plan.  

 

 
Figure 5. Results of UC problem and generation plan 

5. Conclusion 

The data demonstrated in table 2 can be obtained by analyzing the information in figure 3 and figure 4. 

 

Table 2. The benefits to grid in contrast with the data before coordinated dispatch 

 
Total operation 

cost /$ 

Peak-valley 

difference / MW 

Utilization of 

wind 

EVs utilization of 

electricity at night  

Before coordinated 

dispatch 
612761 918.26 86.8% 16.5% 

After coordinated 

dispatch 
598846 787.7 90.7% 25.8% 

 

where the night period is defined as 23:00 to 5:00 the next day. 

By compared the results after coordinated dispatch with before, the conclusion can be drawn that the 

total operation cost has reduced by 2.27%, the peak-valley difference of equivalent load has decreased 

Unit number Unit number
1 2 3 4 5 6 7 8 9 10 1 2 3 4 5 6 7 8 9 10 Wind

1 0 0 0 0 0 0 0 0 1 1 1 0 0 0 0 0 0 0 0 294 455 47
2 0 0 0 0 0 0 0 0 1 1 2 0 0 0 0 0 0 0 0 328 455 56
3 0 0 0 0 0 0 0 1 1 1 3 0 0 0 0 0 0 0 25 400 455 44
4 0 0 0 0 0 0 0 1 1 1 4 0 0 0 0 0 0 0 85 455 455 39
5 0 0 0 0 0 0 1 1 1 1 5 0 0 0 0 0 0 35 90 455 455 38
6 0 0 0 0 0 0 1 1 1 1 6 0 0 0 0 0 0 91 130 455 455 53
7 0 0 0 0 0 1 1 1 1 1 7 0 0 0 0 0 38 105 130 455 455 56
8 0 0 0 0 1 1 1 1 1 1 8 0 0 0 0 30 70 105 130 455 455 51
9 0 0 0 0 1 1 1 1 1 1 9 0 0 0 0 40 140 130 130 455 455 32

10 0 0 1 1 1 1 1 1 1 1 10 0 0 30 35 80 162 130 130 455 455 40
11 1 0 1 1 1 1 1 1 1 1 11 16 0 35 85 80 162 130 130 455 455 34
12 1 0 1 1 1 1 1 1 1 1 12 34 0 55 85 80 162 130 130 455 455 35
13 0 0 0 1 1 1 1 1 1 1 13 0 0 0 45 80 162 130 130 455 455 39
14 0 0 0 0 1 1 1 1 1 1 14 0 0 0 0 45 162 130 130 455 455 39
15 0 0 0 0 1 1 1 1 1 1 15 0 0 0 0 33 75 110 130 455 455 43
16 0 0 0 0 0 1 1 1 1 1 16 0 0 0 0 0 55 60 82 455 455 39
17 0 0 0 0 0 1 1 1 1 1 17 0 0 0 0 0 50 60 60 425 455 50
18 0 0 0 0 0 1 1 1 1 1 18 0 0 0 0 0 60 60 115 455 455 55
19 0 0 0 1 0 1 1 1 1 1 19 0 0 0 32 0 75 93 130 455 455 61
20 0 1 1 1 0 1 1 1 1 1 20 0 18 55 85 0 162 130 130 455 455 54
21 0 0 0 1 0 1 1 1 1 1 21 0 0 0 52 0 162 130 130 455 455 51
22 0 0 0 0 0 1 0 1 1 1 22 0 0 0 0 0 116 0 130 455 455 51
23 0 0 0 0 0 0 0 1 1 1 23 0 0 0 0 0 0 0 52 425 455 68
24 0 0 0 0 0 0 0 0 1 1 24 0 0 0 0 0 0 0 0 370 455 74
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by 14.22%, and the utilization of wind power has risen nearly 4%. Besides, the EVs charging demand 

can be partly transferred to the night-off-peak period to let EVs use more power at this period which can 

benefit both the grid and the EVs users.  
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