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Abstract. Aiming at the problem of the parameter estimation of multiple unresolved targets 

within the radar beam，using the joint bin processing model, a method of jointly estimating 

the number and the position of the targets is proposed based on reversible jump Markov Chain 

Monte Carlo (RJ-MCMC). Reasonable assumptions of the prior distributions and Bayesian 

theory are adopted to obtain the posterior probability density function of the estimated 

parameters from the conditional likelihood function of the observation, and then the acceptance 

ratios of the birth, death and update moves are given. During the update move, a hybrid 

Metropolis-Hastings (MH) sampling algorithm is used to make a better exploration of the 

parameter space. The simulation results show that this new method outperforms the method of 

ML-MLD [11] proposed by X.Zhang for similar estimation accuracy is achieved while fewer 

sub-pulses are needed. 

1 Introduction 

Monopulse processing is widely used in modern radar angle measurement system with sub-beam 

accuracy. However, the case that only one target falls in a radar resolution cell is the precondition of 

conventional monopulse processing to measure the target’s angles accurately. Otherwise, the angle 

estimation using the conventional monopulse processing can wander far beyond the angular separation 

of the targets and these merged measurements often lead to high errors in data association and track 

filtering. Therefore, the parameters estimation of multiple unresolved targets within the radar beam has 

been a hot topic and a challenging problem. 

There were many research literatures on multiple unresolved targets extraction and parameter 

estimation. Some [1-3] modified the antenna configuration to aid in the resolution process, while some 

took advantage of the array signal processing methods including high-resolution beam-forming or 

high-resolution direction finding [1,2]. Others still made use of the monopulse system, but extended 

the concept of the monopulse ratio. The complex monopulse processing using both the in-phase and 

quadrature parts (or real and imaginary parts) of the monopulse ratio, was firstly used to estimate the 

direction of arrivals (DOAs) of two fixed amplitude targets with known relative radar cross section 

(RRCS) [1], and then further improved to estimate DOAs of two unresolved Rayleigh targets under 

different conditions [2] and detection methods [3-5].  

However, all of the above techniques can only pull out at most two unresolved targets for the 

limited information in an isolated matched filter sample, that is, targets are assumed to be located 

exactly where the matched filter is sampled, and there is no “spillover” of target energy to adjacent 

matched filter return. We can regard the above methods as ideal single bin processing. A more realistic 

case was proposed by X. Zhang, et al [1,2], in which sub-bin range and angular estimates of up to five 

targets between them can be detected by utilization of the ML extractor. At the same time, the number 

of targets present can also be detected by applying Rissanen's Minimum Description Length (MDL) 



2

1234567890

3rd International Conference on Advances in Energy, Environment and Chemical Engineering  IOP Publishing

IOP Conf. Series: Earth and Environmental Science 69 (2017) 012155    doi   :10.1088/1755-1315/69/1/012155

criterion. However, the validity of MDL depends on the reliable procedures for ML parameter 

estimation for each possible model and the evaluation of the criteria, which lead to great 

computational burden and easily get into the local extremum. In this paper, we follow a Bayesian 

approach using the joint bin processing model to extract multiple unresolved targets within the radar 

beam. ML estimators are based on the likelihood function, while Bayesian estimators are based upon 

the posterior probabilities whereby the unknown parameters are regarded as random quantities with 

known prior distribution. Different from the case of knowing the number of targets existed in advance  

[1,2], the case treated here is more complex—the number of targets is unknown and assumed random 

during the derivation of the posterior probability distribution. To evaluate the joint posterior 

distribution of the number of targets and their position parameters, an efficient stochastic algorithm 

based on RJ-MCMC [1-3] is proposed.  

2 Joint bin processing model 

As mentioned in [11], we assume the output of the matched filter is triangular in the absence of noise, 

that is, the radar waveform has a rectangular envelope. And also we assume that the matched filter 

sampling rate is once per pulse-length T , meaning that a target can appear only in its contiguous 

matched filter samples. Figure 1 reveals the model of two targets located between two sampling points 

considering the spillover of target energy. T  is defined as the time offset of the target with respect 

to the first sampling point, representing the sub-bin range information. x  represents the amplitude of 

the return peak after matched filter. Define 
T

T



 , then the amplitudes of the return at the first and 

second sampling point are (1 )x and x , respectively. 

Assuming there are k  targets present, we have the in-phase observations for k  targets between 

two sampling points as follows. 
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
 are the parameters to be 

estimated. Here   is not the true off- boresight angle but can be determined from the ratio of the 

antenna pattern gains in for the sum and difference channels [10]. The observations at the first matched 

filter sampling point are denoted as  1 1
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 and  2 1
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
 are the observations at the second. ( )jx m  represents the return peak of 

thj  target at thm  sub-pulse. M  is the number of sub-pulses. In this paper, we consider a Swerling 

Ⅱ radar target model, where targets have pulse-to-pulse Rayleigh fluctuation, meaning  
1

( )
M

j m
x m


 are 

independent and identically distributed (iid) which are Gaussian with zeros mean and variance 2

tj . 
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Figure 1: Signal model of two targets located between two sampling points considering the spillover of 

target energy [11] 

The noise  sn , dan  and  den  are also independent, zero mean and Gaussian, with variance: 
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According to (1), the observation model can be expressed in vector-matrix form as follows. 
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Combine the M  observations, we obtain that 
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 
T

 denotes transpose operation. (:)z Z , (:)k a X  and (:)v W  are the rearrangement of the 

return array Z , the amplitude array X  and the noise array W  along with the column, respectively. 

3 Bayesian model and computation  

Define the unknown parameter set  2, ,k k k kθ s a , which include the position parameter 

matrix ks of k targets, the amplitude vector of k targets and the noise variance (here we assume 

that 2 2 2

s d k    for convenience). Consider the unknown target number k jointly, we can get the 

overall parameter space  max
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3.1 Prior distribution assumption 

According to the definition of sub-bin range   [1] and the relationship between DOA parameters 
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The prior distribution of target number k  is a truncated Poisson distribution; that is 
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According to [11], k  should not be larger than five; that is to say 
max 5k  .  can be interpreted as 

the expected number of targets and its influence can be removed by computing Bayes factors, namely, 

1 2( | ) / ( | )p k p kz z  [1]. 

Conditional on  , kk s  the amplitude parameter 
ka is zeros mean Gaussian with covariance 2
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k k k Σ R s R s  and 2 denotes the expected signal-to-noise ratio (SNR), following a 
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Also, the noise variance is assumed to be distributed according to a conjugate inverse- Gamma prior 

distribution; that is 
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3.2 Posterior distribution formulation 

According to Bayesian theory, the joint distribution of all variables can be derived as  
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where  | , kp kz θ  is the conditional likelihood function which can be obtained from the model 

given by Eq.(7) as 
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The joint distribution of  , kk θ  can be expressed as follows using the hierarchical structure. 
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Using the above assumptions and formulations, we can get  
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This posterior distribution is obviously highly nonlinear and the posterior distribution of thi  

target’s position parameters vector
 ,k is  in 
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where kis  represents the remaining parameter matrix except ,k is of parameter matrix ks . And 

1 i k  . 

3.3 Bayesian computation using RJ-MCMC 

RJ-MCMC would be a good choice with the capability of jumping between subspaces of different 

dimensions. That is to say, RJ-MCMC can make sampler directly from different model orders based 

on the joint distribution on  , kk θ , meaning that the number of targets and the parameters of each 

target can be estimated at the same time.  

The essence of RJ-MCMC method is a general state-space MH algorithm. For our problem, there 

are three states needed, including birth, death and update whose corresponding probabilities are 
kb ,

kd  
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and 
ku  respectively. For all  max0,k k , 1k k kb d u    and 
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where c  is a tuning parameter controlling the update move to jump moves, and ( )p k  is the prior 

probability of thk model. As explained in [15], 0.5c   is also chosen used in this paper. The main 

steps of RJ-MCMC algorithm and the procedure of birth move, death move and update are described 

in detail in [16] (not explained here). 
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Furthermore, during the update move, a hybrid MH sampling algorithm is used to make a better 

exploration of the parameter space. Illuminated by the importance sampling, we choose the proposal 

distribution *
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, ,

exp
( | )

exp

g k j

k j k j

g k j k j

I
q

I d





 
 


 
 

s
s s

s s
  (30) 

where 

 
2

* *

, ,

1

(:, ) ( )
M

T

k j j j k j

m

I m


 s Z D s     (31) 

and *

,( )j k jD s  represents the thj  column of matrix D . j  is a real value on 
2

, 2
3

 
 
 

 and g  is 

not sensitive to the algorithm performance in practice [1]. Compared with the uniform distribution as 

the proposal distribution, a better global exploration of the posterior distribution of target position can 

be got with (30). 

The proposal distribution *

2 , ,( | )k j k jq s s  yields a candidate *

,k js  according to a random walk around 

,k js ; that is, 
2

*

, ,( , )k j k j qNs s Σ . 
2qΣ  is a diagonal covariance matrix whose diagonal elements 

corresponding to  , ,j aj ej   , respectively, mean a perturbation of target position parameters.  
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We calculate the ergodic mean every 50 iterations and decide the convergence when the absolute 

values of three consecutive ergodic means difference are less than a assumed threshold value. 

4 Simulation 

Like [12], we assume that there are at most five targets between two sampling points, and their sub-bin 

range, azimuth and elevation are as specified in Table 1. The hyperparameters and other relative 

parameters are given as 
0 0 0.1   ,

0 2  ,
0 10  , 4

1 2 10    , 0.2  , and 
2

1

30
q

M
Σ I  [1]. 

The simulation results below are all from 200 Monte Carlo runs. 

 

Target index Sub-bin range Azimuth Elevation 

1 0.15 -0.8 -0.9 

2 0.35 -0.6 0.7 

3 0.55 0.1 -0.4 

4 0.75 0.5 0.8 

5 0.95 0.9 -0.8 

Table 1 Five targets’ positions between two sampling points 

We make two numerical simulations to demonstrate the proposed method. 

Example 1 Targets number estimation performance analysis 

The qualities of the targets number estimates obtained under different assumed numbers of targets are 

compared in [12]. Same with [12], we assume that SNR of each target between two sampling points is 

also 25dB. 
cP  is defined as the probability of correct detection of the number of targets. Figure 2 

shows the results of 
cP of both methods. 

1 1.5 2 2.5 3 3.5 4 4.5 5
0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Numbers of targets

P
c

 

 

Pc with 10 sub-pulses of ML-MDL

Pc with 30 sub-pulses of ML-MDL

Pc with 50 sub-pulses of ML-MDL

Pc with 10 sub-pulses of RJ-MCMC

Pc with 30 sub-pulses of RJ-MCMC

Pc with 50 sub-pulses of RJ-MCMC

 
Fig 2 Probability of correct detection of the number of targets with same SNR (25dB) 

From Figure 2, we can see that it becomes easier for both methods to make the correct decision with 

fewer targets. However, different with the method of ML-MDL [11,12], increasing the number of 

sub-pulses doesn’t improve the situation for the method of RJ-MCMC. Furthermore, further 

calculations show that there is little difference for the root mean square errors (RMSEs) of the 

estimates (not given for the space reasons) no matter with 10, 30 or 50 sub-pulses. So in the following 

simulations we choose 10 as the number of sub-pulses. Owing to space reasons, we will make further 

analysis to the choice of number of sub-pulses in the follow-up work. 

Example 2 Targets’ position estimation performance analysis compared with ML 
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Expect the number of sub-pulses, other parameters are same with [12]. Figure 3-5 show the RMSEs of 

targets’ position estimates (including the sub-bin range, azimuth and elevation) for target number one 

under different numbers of actual targets and different SNRs.  
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0.015
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0.03

0.035

SNR/dB

R
M

S
E

 o
f 


 

 

1 target  ML

2 targets ML

3 targets ML

4 targets ML

5 targets ML

1 target MCMC

2 targets MCMC

3 targets MCMC

4 targets MCMC

5 targets MCMC

 
Fig. 3 RMSEs of the estimates of the sub-bin range   of targets 1 with different numbers of actual 

targets under different SNRs 
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1 target ML

2 targets ML

3 targets ML

4 targets ML

5 targets ML

1 target MCMC

2 targets MCMC

3 targets MCMC

4 targets MCMC

5 targets MCMC

 
Fig. 4 RMSEs of the estimates of the azimuth a  of targets 1 with different numbers of actual targets 

under different SNRs 

Obviously from the figures, the RMSEs of sub-bin range, azimuth and elevation can keep within the 

range of less than 0.035, 0.07 and 0.14, respectively. And the RMSEs of estimates grow larger as the 

number of actual targets increase for both methods. When there are only three or fewer targets or the 

SNR is larger than 25dB, the RMSEs of the estimates even can reduce to less than 0.02, 0.02 and 0.06, 

respectively, which can satisfy many practical applications. Furthermore, we can also see that the 

method proposed in this paper can achieve similar estimation accuracy only with 10 sub-pulses 

compared with the method proposed in [11] and [12] with 50 sub-pulses, which means great 

importance in real-time processing. 
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Fig. 5 RMSEs of the estimates of the elevation e  of targets 1 with different numbers of actual targets 

under different SNRs 

5 Conclusions 

For the problem of the joint parameter estimation of multiple unresolved targets within the radar 

beam，motived by the joint bin processing model, we propose a method of jointly estimating the 

number and the position of the targets based on RJ-MCMC. Different from the conventional 

step-by-step estimation method, the proposed method based on RJ-MCMC can jointly estimate the 

number of targets, their position and other parameters. And simulations show that similar estimation 

accuracy can be achieved with only 10 sub-pulses, which would be of great importance in real-time 

processing. Next we will further analyze the estimation performance under different targets’ signal 

power. 
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