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Abstract. Space fractional advection diffusion equations are better to describe anomalous 

diffusion phenomena because of non-locality of fractional derivatives, which causes people to 

confront great trouble in problem solving while enjoying the convenience from mathematical 

modelling, especially in high dimensional cases. In this paper, we solve the three-dimensional 

problem by the process of dimension by dimension, which can be achieved through a 

predictor-corrector algorithm. In time discretization, Crank-Nicolson scheme is adopted to 

match second-order difference operator of the space direction. Then, the efficiency of this 

method is demonstrated by some numerical examples finally. 

1 Introduction 

In recent decades, anomalous diffusion has been widely recognized in the scientific fields. Thus the 

fractional partial differential equations, as models, are used to describe the corresponding phenomena. 

The space fractional advection diffusion equation (SFADE) is especially important in describing and 

understanding the dispersion phenomena involving two physical processes: advection and 

superdiffusion, where a particle plume spreads at a rate inconsistent with the classical Brownian 

motion model. In form, SFADE is derived by replacing the second-order derivative by a fractional 

derivative in the classical advection diffusion equation. By far, there have already been some 

important progresses for solving the fractional PDEs. The analytical methods having been proposed 

include the Fourier transform method, the Green function method [8], and the methods presented in 

[5]. However, in most cases, obtaining the exact solutions is very difficult because of the non-local 

property of the fractional derivative. Thus reliable and efficient numerical techniques have been 

developed, such as finite difference methods [9,13], finite element methods [6,14], finite volume 

methods [7] and spectral methods [1], etc. 

Because of the extensive use of the three-dimensional models in research, this paper focuses on the 

three-dimensional SFADE in finite domain with zero Dirichlet boundary conditions. The fractional 

derivative is non-local operator, which causes the stiffness matrix of the discrete linear system is a 

Toeplitz type, and makes fractional partial differential equations more difficult to solve, especially in 

high-dimensional cases. To our knowledge, the numerical methods for solving the three-dimensional 
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problems are relatively sparse. Deng et al. extended the alternating direction implicit (ADI) schemes to 

the three-dimensional fractional PDEs, and improved their efficiency [4]. Chen et al. proposed a 

fractional ADI scheme for the three-dimensional fractional sub-diffusion equation [3]. Wang et al. 

developed a fast iterative ADI finite difference method for solving three-dimensional space fractional 

diffusion equations [11]. Here, we extend the predictor-corrector algorithm [12] to solve the fractional 

problem, i.e., the three-dimensional SFADE. The method adopted in this paper is of good stability 

properties, reasonable computational cost and ease of implementation for the three-dimensional 

problems. The idea behind the algorithm is to use a suitable combination of an explicit and implicit 

technique to obtain a method with better convergence characteristics, and solve the high-dimensional 

problems by the process of dimension by dimension. Abundant numerical examples are provided to 

verify the theoretical results afterwards. 

  The remainder of this paper is organized as follows. In section 2, we outline the three-dimensional 

SFADE and its fully discrete scheme by finite difference approximation. The numerical experiments 

are carried out in section 3 to verify the theoretical analysis, and the conclusions are summarized in the 

last section. 

2 The predictor-corrector scheme for the three-dimensional SFADE  

In this paper, we consider the following problem named as SFADE of order 1 , , 2      

 
   1 2

, ,
, , , , , ,

L Rx x x x

u x y z,t
a D u x y z t a D u x y z t

t

 


 


 

   1 2, , , , , ,
L Ry y y yb D u x y z t b D u x y z t    

   1 2, , , , , ,
L Rz z z zc D u x y z t c D u x y z t    

   
1 2

, , , , , ,u x y z t u x y z t
k k

x y

 
 

 

 
 3

, , ,
, , , ,

u x y z t
k f x y z t

z


 


         (1)                                   

with boundary and initial conditions 

 , , , 0,u x y z t          , , , (0, ],x y z t T     (2) 

   0, , ,0 , , ,u x y z u x y z          , , ,x y z      (3) 

where       3, , , .L R L R L Rx x y y z z       

1 1 1, ,a b c  and 
2 2 2, ,a b c  are the left and right diffusivity coefficients in the ,x y , and z  directions, which 

are non-negative constants. 
1 2,k k , and 

3k  are advection coefficients in these three directions 

respectively, and  , , ,f x y z t  is a forcing function. The advection term in the SFADE is first-order 

classical derivative, and the fractional derivatives are Riemann-Liouville type defined as 

 
 

   
2 1

2

1
,

2L
L

x

x x
x

D u x x u d
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


 
          (4) 

and 

 
 

   
2 1

2

1
.

2

R

R

x

x x
x

D u x x u d
x


   




 
           (5) 

Equations (4) and (5) are called the left and right Riemann-Liouville fractional derivatives in 

x direction. The left and right Riemann-Liouville fractional derivatives in y and z directions can be 

defined in similar way. When 
1 2a a , 

1 2b b , 
1 2c c , and 

1 2 3 0k k k   , the Riesz fractional 

diffusion equation is obtained as a special case of (1). 

2.1 Discretizations of Riemann-Liouville fractional derivatives 

Let
1 2 3, ,N N N and M be positive integers,  1 1/R Lh x x N  ,  2 2/R Lh y y N  ,  3 3/R Lh z z N  and 

/T M  be the uniform step sizes of space and time respectively, by which we define a spatial and 

temporal partition 
1i Lx x ih  for

10,1,...,i N , 2j Ly y jh  for
20,1,...,j N , 

3m Lz z mh   
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for
30,1,...,m N , and 

nt n  for 0,1,...,n M . , ,

n

i j mu  denotes the approximated value of  , , ,i j m nu x y z t , 

and  , , , , ,n

i j m i j m nf f x y z t . We use the second-order approximation operators given in [2,10] to 

discretize the left and right Riemann-Liouville fractional derivatives (4) and (5), i.e., 

     2

, 1, , , , , , ,
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Moreover, we use the centered difference formula to approximate the classical first-order space 

derivative in advection term. Denote both classical and fractional approximation operators related to 

variable x  as follows 

1, , 1, ,

, ,

1

,
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u u
D u
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                               (6) 
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1
.
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Notations  

, , 1 , , ,n n
x i j m x i j mD u k D u                              

, , , 1 , , , ,n n
x i j m x i j mu a u  

                              

, , , 2 , , , ,n n
x i j m x i j mu a u  

                             

are introduced for simplicity. 

Analogously, the discrete operators and notations corresponding to variables y and z  can be 

described.  

2.2 Numerical scheme for the three-dimensional SFADE 

We use the strategies (6)-(8) to discrete the space derivatives in the three directions, and the Crank-

Nicolson scheme is used in time direction. Then equation (1) can be written in the following form 

 , , , 11 , , ,
2 2 2

x y z i j m nu x y z t  

  
   

 
   

 
  

 , , ,1 , , ,
2 2 2

x y z i j m nu x y z t  

  
  

 
    
 

  1

1/2 , ,, , , ,n

i j m n i j mf x y z t R 

    

where 

, ,, : ,xx xx D   
 

    
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,y ,y,y : ,yD   
 

    

,z ,z,z : ,zD   
 

    

 1/2 1 / 2,n n nt t t     

and the local truncation error 

 1 2 2 2 2

, , 1 2 3 ,n

i j mR C h h h        

with C  being some positive constant. 

Subsequently, taking  1/2

, , 1/2, , ,n

i j m i j m nf f x y z t

 , we derive the full discretization scheme of (1) as 

1

, , , , ,m1
2 2 2

n

x y z i ju  

  
    

   
 

 

1/2

, , , , , , ,1 .
2 2 2

n n

x y z i j m i j mu f  

  
     

     
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     (9) 

We add 

 
2 2 2

1

, , , , , , , ,m , ,m+ +
4 4 4

n n

x y x z y z i j i ju u     

  
       

 
 

 

 
3

1

, , , , ,m , ,m+
8

n n

x y z i j i ju u  


     

to the left hand side of equation (9) and distribute the appropriate half of the above term to the right 

hand side, then we are left with  

1

, , , , ,1 1 1
2 2 2

n

x y z i j mu  

  
      

     
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1/2

, , , , , , ,1 1 1
2 2 2

n n

x y z i j m i j mu f  

  
       

       
   

 . (10) 

We adopt the predictor-corrector scheme [12] to solve the system of equations (10). It can be 

proved rigorously that the numerical scheme is unconditionally stable and second-order convergent in 

both time and space directions by the matrix method, though we omit them here. 

1/6 1/2

, , , , , , ,1 ;
2 2

n n n

x i j m i j m i j mu u f

 
   

   
 

                  (11) 

2/6 1/6

, , , , ,1 ;
2

n n

y i j m i j mu u


   

  
 

                                 (12) 

3/6 2/6

, , , , ,1 ;
2

n n

y i j m i j mu u


   

  
 

                                 (13) 

 +1 +3/6 +3/6 +3/6 1/2

, , , , , , , , , , , , , , ,= + + + .n n n n n n

i j m i j m x i j m y i j m z i j m i j mu u u u u f        (14) 

Equations (11)-(13) represent the predictor, which determine , ,

t

i j mu  at  1/ 2t n    by splitting 

scheme. Equation (14) is the corrector. 

3 Numerical examples 

In this section, some numerical experiments are carried out to verify the convergent orders and 

stability of our method. Let 
hU  and U denote the numerical solution and exact solution respectively, 

and in the numerical experiments we compute the global truncation error of 
hU U in the following 

discrete L  and 2L  norms 

 
3 2 1

, , ,
1 1,11 1,1 1

: max , , ,M

h i j m i j mL m N j N i N
U U u u x y z T

        
     

 
3 2 1

2

1/2
1 1 1

2

, , , 1 2 3

1 1 1

: , , , .
N N N

M

h i j m i j mL
m j i

U U u u x y z T h h h
  

  

 
   

 
    
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Example 3.1. Consider equation (1) on    
3

0,1 0,1T    with zero Dirichlet boundary conditions 

on the cube for all 0t     

       , , , , , , , ,u x y z,t u x y z,t u x y z,t u x y z,t

t x y z

   
  

   
 

       0 1 0 1, , , , , ,x x y yD D u x y z t D D u x y z t         

     0 1 , , , , , , .z zD D u x y z t f x y z t      

The exact solution is 

       
3 3 33 3 3, , , e 1 1 1tu x y z t x x y y z z      

with the initial data    0 , , , , , ,0 .u x y z u x y z The forcing function  , , ,f x y z t  can be easily obtained. 

Table 1: The L and 2L errors and convergent orders for example 3.1 at 1t   with 
1 2 3h h h    . 

    h L
U U   Rate 2h L

U U  Rate 
1.2   1.2   

1.2   

 

1/10 

1/20 

1/40 

1/80 

1/160 

3.2536e-007 

7.9892e-008 

2.0205e-008 

5.0166e-009 

1.2497e-009 

- 

2.0259 

1.9833 

2.0099 

2.0051 

5.4273e-008 

1.3476e-008 

3.3392e-009 

8.3033e-010 

2.0700e-010 

- 

2.0098 

2.0128 

2.0077 

2.0041 
1.4   1.5   

1.6    

 

1/10 

1/20 

1/40 

1/80 

1/160 

2.4730e-006 

5.9312e-007 

1.4392e-007 

3.5184e-008 

8.6882e-009 

- 

2.0599 

2.0431 

2.0323 

2.0178 

4.3714e-007 

1.0108e-007 

2.4131e-008 

5.8858e-009 

1.4529e-009 

- 

2.1126 

2.0665 

2.0356 

2.0183 
1.9    
1.9  1.9   

  

 

1/10 

1/20 

1/40 

1/80 

1/160 

3.0171e-005 

5.6971e-006 

1.2066e-006 

2.8059e-007 

6.7409e-008 

- 

2.4049 

2.2393 

2.1044 

2.0575 

5.5585e-006 

1.0826e-006 

2.1857e-007 

4.9724e-008 

1.1871e-008 

- 

2.3602 

2.3083 

2.1316 

2.0665 

 

Example 3.2. Consider equation (1) on    
3

0,1 0,1T    with zero Dirichlet boundary conditions 

on the cube for all 0t  . The convection and diffusion coefficients are given as   

1 0.25 ,k x             
2 0.25 ,k y             

3 0.25 ,k z  

1 ,a x                   2 1 ,a x


          1 ,b y  

 2 1 ,b y


             1 ,c z             2 1 .c z


      (15) 

The exact solution is 

       
3 3 33 3 3, , , e 1 1 1tu x y z t x x y y z z     

with the initial data    0 , , , , , ,0 .u x y z u x y z The forcing function  , , ,f x y z t  can be easily obtained. 

 

Table 2: The L and 2L errors and convergent orders for example 3.2 at 1t   with coefficients given in 

(15) and 
1 2 3h h h    . 

    h L
U U   Rate 2h L

U U  Rate 
1.2   1.2   

1.2   

 

1/10 

1/20 

1/40 

1/80 

1/160 

1.3401e-007 

3.2549e-008 

8.1374e-009 

2.0315e-009 

5.0803e-010 

- 

2.0417 

2.0000 

2.0020 

1.9996 

3.6232e-008 

8.6020e-009 

2.1119e-009 

5.2465e-010 

1.3085e-010 

- 

2.0745 

2.0261 

2.0091 

2.0034 
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1.4   1.5   

1.6    

 

1/10 

1/20 

1/40 

1/80 

1/160 

3.5712e-007 

8.8817e-008 

2.2122e-008 

5.5125e-009 

1.3760e-009 

- 

2.0075 

2.0054 

2.0047 

2.0022 

9.1509e-008 

2.3259e-008 

5.7916e-009 

1.4417e-009 

3.5954e-010 

- 

1.9761 

2.0058 

2.0062 

2.0035 

1.9    
1.9  1.9   

  

 

1/10 

1/20 

1/40 

1/80 

1/160 

1.4596e-006 

3.4108e-007 

8.2214e-008 

2.0175e-008 

5.0072e-009 

- 

2.0974 

2.0527 

2.0268 

2.0105 

3.8000e-007 

8.8657e-008 

2.1091e-008 

5.1381e-009 

1.2680e-009 

- 

2.0997 

2.0716 

2.0373 

2.0187 

 

4 Conclusion  

In this paper, an efficient numerical scheme for solving the three-dimensional SFADE is provided. 

The idea behind the predictor-corrector algorithm is to combine an explicit technique with an implicit 

one properly to obtain a method with better convergence characteristics, and dispose the high-

dimensional problem by the process of dimension by dimension. Enough numerical experiments are 

carried out to verify the effectiveness of the algorithm, illustrating that the method is unconditionally 

stable, and is second-order convergent in both time and space directions, in discrete L  and 2L  norms, 

respectively. Actually, the algorithm in this work is still efficient for other high dimensional space 

fractional PDEs. 
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