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Abstract. Multigrid preconditioned conjugate gradient method is proposed for the algebraic 

systems resulting from two 8-node hexahedron combined hybrid elements with high 

performance for the linear elasticity problem.  Numerical computations are presented, which 

demonstrate the convergence and effectiveness of the method. 

1 Introduction 

Combined hybrid element method, a stable finite element discrete method, was firstly put forward by 

Zhou [7, 8]. The method was firstly applied to two-dimensional elasticity problem in [9] and four 

types of combined hybrid quadrilateral elements have been constructed there. Moreover, Nie further 

developed the method to three-dimensional problem, and two kinds of 8-node hexahedral elements 

with high performance were obtained in [10]. But there is few corresponding work for the efficient 

solvers of the discrete system from the method.  

Recently multigrid methods have been considered for the linear elasticity equation, using the 

combined hybrid quadrilateral elements. On the basis of the proof idea in [2], [6] has proved that W-

cycle, with sufficiently many smoothing steps on each level, converges in L2 norm. In addition, 

variable V-cycle multigrid preconditioners have been proposed in [5], based on two simple intergrid 

transfer operators. And [5] testified that the condition numbers of the preconditioned systems are all 

uniformly bounded, according to the abstract theory in [1]. The objective of this paper is to develop 

the preconditioned conjugate gradient algorithm for two kinds of 8-node hexahedron combined hybrid 

elements with high performance in numerical aspects. That is to say, we construct various multigrid 

preconditioners for the linear systems discretized by the elements, based on the trilinear interpolation 

operator. The cantilever beam problem is given and the numerical results show that the method has a 

good convergence. 

The remainder of this paper is organized as follows. The basic concept of combined hybrid element 

method is briefly stated in Section 2. The preconditioned conjugate gradient method is described in 

Section 3. In Section 4, several multigrid preconditioners are applied to the linear systems arisen from 

the two 8-node hexahedron combined hybrid elements of a simple cantilever beam problem. A 

conclusion is given in Section 5. 

2 Combined hybrid element 

Combined hybrid element method is based on combined hybrid variational principle which is 

formulated by the weighted average of domain decomposed Hellinger-Reissner principle and its dual. 

An important feature of this method is that Babuska-Brezzi condition [3] can hold automatically if the 

displacement space is weakly compatible [9].  Hence, it is a stable hybrid element method. Because 
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the restriction of the condition is avoided, it offers a wider range of the optimization spaces for field 

variables.   

Give an initial hexahedron subdivision 1 { }   . By connecting the midpoints of the corresponding 

edges of the hexahedrons in 
1k , a hexahedron subdivision

k is obtained. Let 

kh  max{ : }j j kdiam    denote the mesh size. By this way, we have a family of hexahedron 

subdivisions  of  : { :1 }k k J   .  

Assume kU  and kV  be displacement and stress discrete spaces, respectively. The discrete 

formulation of linear elasticity problem by combined hybrid element is as follows: find 

 ,k k k ku V U    such that 
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kv U  , ( ):c cT v v , cv  is the conforming part of v  and n  represents the unit outer normal to 

j . 

Concretely, Wilson’s interpolation space in three-dimensional case is adopted as kU .   

In order to achieve the high performance of the above hybrid scheme, the stress space is subjected 

to the constraint of energy-compatible condition [9], i. e. ,k kV v U   , 

1, ( , ( )) : ( ( )) 0
j

j
c cb v T v n v T v ds 


      . 

Hence, the following two discrete spaces 0 1,kH  and 0 1 ,kH    are given: 

0 1, 1, 1,: { ( , ( )) 0},
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6I  is the unit matrix and jF  is the isoparameteric mapping from the referential square 

[ 1,1] [ 1,1] [ 1,1]      to j . 

The combinations 0 1,k kU H  and 0 1 ,k kU H   correspond to the two 8-node hexahedron combined 

hybrid elements CHH(0−1) and CHH(0−1)+. Meanwhile (1) can be simplified as follows: to find 

( , )k k k ku V U    such that 
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   (2) 

( , )ks    is positive definite, so the stress can be expressed linearly by the displacement on each 

element. In consequence, by eliminating the stress parameters, a final linear system containing the 

displacement variables only can be generated: Find k ku U , such that 

                                
k k kA u f                                           (3) 

Obviously, the scheme (3) is equivalent to (2). 

3 Multigrid preconditioned conjugate gradient method 

In this section, we give the multigrid preconditioned conjugate gradient method which is a 

preconditioned conjugate gradient method with multigrid method as a preconditioner. First of all, 

multigrid method is described. 

3.1 Multigrid method 

Multigrid method, as a very effective iterative solver method, is used for solving a linear equation 

system 

                                kA v b .                                             (4) 

The multigrid cycle (iteration) looks like: 

1. Pre-smoothing:  The original vector is 0v . Iterate on (4) to reach 1v  by ( )m k  traditional 

iteration methods. 

2. Compute the residual: 1k kr b A v  . 

3. Restriction: restrict the residual to the coarser grid by 1k kr Rr  , where R  is the restriction 

matrix from the fine grid to the coarser grid. 

4.  Solve the coarse grid error equation  

                     1 1k kA e r  .                                             (5) 

 If 1k   is the coarsest level, (5) is solved by the direct method. Otherwise, give the initial value 

0 0e  and obtain a multigrid approximation solution 1e  by  recursive calls of multigrid method on 

1k   level. If 1  , it is V-cycle multigrid method. If 2  , it is W-cycle multigrid method. 

5. Prolongation: The coarser grid error 1e  is interpolated to the fine grid by 2 1v Pe , where p is 

the interpolation matrix. 

6. Correction: the vector 1v  obtained in the pre-smoothing process is corrected as: 3 1 2v v v  . 

7. Post-smoothing: perform ( )m k  iterations with the initial value 3v  on the fine grid, then a 

multigrid approximation 4v  is generated. 

Remark If the iteration number on the smoothing step increases exponentially with the decrease of 

the grid number in V cycle, it is the variable V-cycle multigrid method. 

3.2 Multigrid preconditioned conjugate gradient method 
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Multigrid preconditioned conjugate gradient method uses the multigrid method as a preconditioner for 

conjugate gradient method. 

Here Au f  is concerned. Multigrid preconditioned conjugate gradient method is explained in the 

following: 

Assume TM LL , where L  is a nonsingular matrix. Let 1 TA L AL  , Tu L u  and 1f L f . 

Then solve Au f using the plain conjugate gradient method: 

0u  is an initial value, then an initial residual 0r  is 0 0r f Au  . 0 0Ms r  is relaxed by the 

multigrid method  and an initial direction vector  is 0 0:p s . 

0i           

        While (! Convergence) { 

( , ) / ( , )i i i i is r p Ap  , 

        1i i i ix x p   , 

1i i i ir r Ap   , 

Convergence test, 

Relax 1 1i iMs r   using the multigrid method, 

1 1( , ) / ( , )i i i i is r s r    

1 1i i i ip s p   , 

i   . 

             } 

4 Numerical example  

In this section, based on the trilinear interpolate operator (a generalization of the bilinear interpolation 

operator to three-dimension), we will consider multigrid preconditioner for the linear systems resulting 

from combined hybrid hexahedron elements discretization of the following cantilever beam problem. 

Example The cantilever beam problem [4]. 

 

 
Figure 1: the cantilever beam problem 

Firstly, the equation is discretized by CHH(0−1) and CHH(0−1)+. Then the preconditioned 

conjugate gradient (PCG) method is applied to the discrete systems. Here V-cycle, W-cycle and the 

variable V-cycle multigrid methods are adopted as the preconditioners respectively. We take 

symmetric Gauss-Seidel iterations for the smoother, the zero vector for the initial value and trilinear 

interpolation operator for the prolongation operator in the multigrid method. The smoothing number is 

2J k  on grid level (1 )k k J   in variable V-cycle multigrid method. In the following tables, the 

iterations number and the CPU time (in seconds) needed are listed as the relative error of the residual 

is reduced by a factor of 510 . 
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Table 1: variable V-cycle PCG for CHH (0−1) and CHH (0−1)+ 

 Grid 2×4×4 4×8×8 8×16×16 16×32×32 

 Dofs 135 675 4131 28611 

CHH(0-1) Iter 18 15 17 17 

 Time 0.05 0.20 4.16 115.17 

CHH(0-1)+ Iter 18 15 17 17 

 Time 0.05 0.20 4.08 112.97 

 

Table 2: W-cycle PCG for CHH (0−1) and CHH (0−1) + with one smoothing step 

 Grid 2×4×4 4×8×8 8×16×16 16×32×32 

 Dofs 135 675 4131 28611 

CHH(0-1) Iter 18 15 15 15 

 Time 0.05 0.25 3.80 103.25 

CHH(0-1)+ Iter 18 15 16 15 

 Time 0.05 0.23 4.10 107.81 

   

Table 3: V-cycle PCG for CHH (0−1) and CHH (0−1) + with one smoothing step 

 Grid 2×4×4 4×8×8 8×16×16 16×32×32 

 Dofs 135 675 4131 28611 

CHH(0-1) Iter 18 18 21 23 

 Time 0.05 0.27 4.63 141.92 

CHH(0-1)+ Iter 18 18 22 24 

 Time 0.05 0.23 4.96 154.92 

 

Table 4: V-cycle PCG for CHH (0−1) and CHH (0−1) + with two smoothing step 

 Grid 2×4×4 4×8×8 8×16×16 16×32×32 

 Dofs 135 675 4131 28611 

CHH(0-1) Iter 12 13 16 18 

 Time 0.03 0.25 5.45 180.08 

CHH(0-1)+ Iter 12 13 16 18 

 Time 0.03 0.27 5.76 183.73 

 

Seen from the tables, various PCG methods show a quick convergence for CHH(0-1) and CHH(0-

1)+. The results in Table 1 and 2 demonstrate that W-cycle PCG need less time and iteration number 

than variable V-cycle PCG, in spite of the same smoothing number in the two methods. Moreover, 

from Table 3 and 4, it is obvious that the iteration number is dropped sharply but more CPU time is 

lost, with the increase of the smoothing number. 

5 Conclusion 

Based on the trilinear interpolate operator, we present the preconditioned conjugate gradient method 

with various multigrid preconditioners for the two 8-node hexahedron combined hybrid elements with 

high performance. The results of the numerical example exhibit that the method is convergent and 

efficient. 
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