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Abstract. Triacylglycerol is an ester which is made of glycerol and three fatty acids. This 

compound is an important feedstock for biodiesel production. In this study, several strains of 

oleaginous bacteria were isolated from environmental sample based on their ability to grow in 

mineral salts medium supplemented with wood-derived sugars such as cellulose, arabinose, 

xylose, mannose, and galactose. The lipid accumulating bacteria were selected based on 

fluorescent signal from hydrophobic inclusion in the cytoplasm after incubation in selective 

medium containing lipophilic dye 0.5 % (w/v) nile red. The lipid content was analyzed using 

thin layer chromatography (TLC) and gas chromatography-mass spectrometry (GC-MS). In this 

study, three bacterial isolates 2HPCS1R4, 1LPCS2R2, and 1LPCS2R14 were selected among 

several candidates. TLC analysis of hydrophobic substance from 1LPCS2R2 and 1LPCS2R14 

showed two overlapped discrete bands corresponded to triacylglycerol reference band. While 

2HPCS1R4 displayed a faint band located above the reference band. GC-MS analysis 

confirmed that the bands consisted of fatty acid methyl esters with alkyl length varied from C12 

to C17. Kinetic study showed that the fastest growing strain was 1LPCS2R2 had the highest 

growth rates and when grown in glucose (µ = 0.29 h
-1

) and xylose (µ = 0.16 h
-1

). In conclusion, 

this study has identified of prospective bacterial isolates for commercial biodiesel production. 

1. Introduction 

Agriculture and plantation are the most important economic sector in Indonesia. Palm oil and pulp-

paper industry contributes to almost US$ 31.27 billion from total of US$ 86.01 billion of Indonesian’s 

export[1]. By the year of 2013, Indonesia had become the second largest palm oil producer after 

Malaysia with total production of 12 million tons of crude palm oil (CPO) accounted to 44% of total 

world CPO production[2]. The tremendous number of production is also followed by significant 

amount of waste. Most of the agriculture and plantation waste is lignocellulosic biomass. It is a 

recalcitrant substance served as structural backbone of plant cells and composed of cellulose (40%-

50%) and hemicellulose (25%-30%) bound together by lignin (15% - 20%). Cellulose is a 

homogenous polymer consisted of several glucose units through β-1-4 glycosidic bond. Hemicellulose 

is a branched-and linear heteropolymer composed of mixture of 200 to 400 units of pentose (C5), such 
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as xylose and arabinose, and hexose (C6), such as mannose, glucose, and galactose, sugars[3]. Lignin 

is an aromatic heteropolymer complex substance consisted of mostly three main monomers, guaiacyl 

(G) unit from coniferyl alcohol precursor, syringyl (S) unit from sinapyl alcohol precursor, and p-

hydroxyphenyl (H) from p-coumaryl alcohol precursor. Each different plant species has different ratio 

of G, S, and H[4,5]. 

 

Due to the recalcitrant nature of the lignocellulosic biomass, pretreatment is required to degrade the 

overall structure of the biomass in order to release fermentable sugars for energy and carbon source for 

microbial-based biotechnological processes[6]. To date, there are several established pretreatment 

technologies which are described elsewhere[7]. One of them is acid hydrolysis that converts 

lignocellulosic biomass to polysaccharides such as cellulose, hemicellulose and monosaccharides such 

as arabinose, xylose, mannose, galactose and glucose and the composition varied based on the 

concentration of the acid and the enzyme[8]. These compounds can serve as cheap and abndant carbon 

source which is required for bulk low cost biodiesel production. 

 

Biodiesel consists of monoalkyl esters of long-fatty acids with short-chain alcohols such as methanol 

or ethanol which constitute fatty acid methyl esters (FAMEs) or fatty acid ethyl esters (FAEEs) 

respectively. Though biodiesel has several advantages over petroleum diesel, commercialization of 

this environmental friendly energy is still limited (a detail discussion is available elsewhere[9]. 

Production costs, sustainability and geographic-dependent availability of feedstock are the main 

reason of the hurdle. Therefore the use of lignocellulosic biomass can reduce the production cost. 

Some of lignocellulosic biomass are available as underutilized waste in agriculture, plantation, and 

wood-related industry. Low cost bioconversion using oleaginous microorganisms, that can utilize the 

feedstock for biodiesel production, can give alternative solution for the issue[10]. 

 

In this report, explorative study to screen and characterize novel oleaginous microorganisms which 

were able to utilize lignocellulosic biomass was presented. Some environmental sample from various 

sources such as compost and sludge were collected and then the materials were incubated in screening 

medium supplemented with wood-derived sugars such as cellulose, xylose, arabinose, and glucose. 

Oleaginous microorganisms was screened using microscope fluorescence and validated by thin layer 

chromatography and gas chromatography – mass spectrometry. 

2. Materials and Methode 

2.1. Samples 

Samples were collected from late stage compost soil located at composting facility in municipal 

garden, at Komplek Perumahan Dosen ITB, Jl. Kanayakan Bandung, Indonesia. The sewage sludge 

was collected from waste water and shrimps ponds in Perumahan Kompleks Pertamina Klayan, 

Gunung Jati, Cirebon, Indonesia. All samples used for this study were transferred to the laboratory and 

stored at 4 
o
C.  

2.2. Screening of Cellulosic Biomass Utilizing Microorganisms 

In order to isolate bacteria which are capable to utilize cellulosic biomass, a 2 ml resuspended sludge 

sample and 2 g of each compost soil were enriched in 200 ml of mineral salts medium (MSM), the 

high phosphate MSM (HPMSM)[11] and the low phosphate MSM (LPMSM)[12] and each was 

supplemented with 2% cellulose and starch as the sole carbon source. The aerobic incubation was then 

performed in temperature-controlled room (30
o
C) for 48 hours. The selection of microorganisms was 

conducted by transferring 500 µl of the liquid media containing selectively enriched microbes into 

agar plate HPMSM and LPMSM, each supplemented with 2% (w/v) of cellulose, arabinose, xylose, 

mannose, and galactose as the sole carbon source. 
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The plates were incubated at 30
o
C for 4 – 7 days until the bacterial colonies was grown. In order to 

obtain axenic cultures, the mixed culture bacterial colonies were restreaked into the new identical 

medium for three times. To store the selected bacteria, 2 ml of 10 % (w/v) sterile skim milk (Difco) 

was added to the bacteria grown in solid agar media, transferred to the cryo vial tube containing 

several sterile paper disc. The bacterial cells were freezed for at least 6 hours at -20°C then lyophilized 

with freeze dryer. The bacterial strains were then stored at -80
o
C. 

2.3. Screening of Hydrophobic Substance Accumulating Microorganisms 

PHAs granule which is intracellularly accumulated by certain microorganisms can be visualized using 

lipophilic stain, nile red, bound specifically with hydrophobic substances like lipid, wax esters, and 

PHAs. Modification of original method[13] was employed during this study. The detail of the protocol 

is as the following: Nile red (Biochemika) was dissolved with DMSO to give final concentration of 

0.5% (w/v). The selected microorganisms was incubated in this solution for at least 5 minutes. 

Afterwards, the hydrophobic granule was observed under fluorescence microscope (Carl Zeiss) at a 

wavelength of 598 nm. 

2.4.    Thin Layer Chromatography 

Thin layer chromatography (TLC) was performed to rapidly characterize the hydrophobic content of 

the sample from bacterial isolate acquired from the microscope fluorescence screening. The technique 

was modification of established methods which is described elsewhere[14]. The detail of the method is 

as followed. The bacterial cell candidate was firstly incubated in -20°C for at least 12 hours. 

Afterwards, the frozen cell was dried using freeze dryer for at least for 12 hours. The biomass was 

pulverized. Hydrophobic extraction was performed by weighing approximately 10 mg of the cell 

powder and mixed it with 1 ml of chloroform : methanol (2:1) in a microtube. Afterwards, the mixture 

was rigorously mixed with vibromixer for 1 minute at room temperature. In order to separate the 

extracted hydrophobic-rich substances from the rest of the cell biomass, the mixture was centrifuged 

for 10 minutes at 13,000 rpm. Afterwards, the extraction procedure was repeated with the rest of the 

cell biomass. The second supernatant was mixed with the first, afterwards it was evaporated until the 

volume achieve to approximately 0.2 ml. The sample was applied to the silica gel plate (Silica Gel 60, 

DC Kieselgel 60, Merck). Afterwards the plate was incubated in air-tight closed container containing 

mobile phase mixture composed of hexane : diethyl ether : acetic acid (90 : 10 : 1 v/v/v). The sample 

visualization was performed by exposing the plate with iodine vapour to characterize the unsaturated 

fatty acids[15]. To detect lipid fractions which did not contain double bond (saturated fatty acids), the 

sample was sprayed with 30% (v/v) aqueous sulfuric acid and heated in an oven to 200°C until the 

spot is visualized[14]. 

2.5.  Gas Chromatography Mass Spectrometry 

The lipid content of the bacterial cell which accumulating hydrophobic granule was analyzed using 

gas chromatography mass spectroscopy (GC-MS). The method was modification from a method 

which is described elsewhere[16]. The detail of method is described as followed. The selected isolates, 

contained large hydrophobic granule, were frozen at -20
O
C. Afterwards, the cells was lyophilized for a 

minimum of 24 hours. The cell was pulverized and 10 mg was transferred to a test tube. Alternatively, 

the hydrophobic content of the lyophilized cell was firstly separated with TLC, then the expected 

bands were scratched and 10 mg of the powder was transferred to test tubes. Afterwards methanolysis 

procedure was performed to convert the lipid sample to volatile derivative. To achieve this goal, 1 ml 

of a mixture of 85% (v/v) methanol and 15% (v/v) sulfuric acid was added, incubated at 100°C for 4 

hours. Water was added to the reaction product to dissolve and separate the hydrophilic portion. A 3 µl 

organic phase was analysed in GC-MS instrument after splitless injection. The instrument was Series 

6890 GC system equipped with a series 5973 Ei MSD mass-selective detector (Hewlett Packard). The 

column was BPX 35 capillary column (60 m x 250 µm, film thickness 250 µm (SGE Analytical 

Science). The carrier gas was helium, constant flow of 0.6 ml/min. The temperature injector and 
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detector were 250°C and 240°C respectively. The following temperature program was applied: 120°C 

for 5 minutes, increased by 3°C/minutes to 180°C and by 10°C/minutes to 220°C. The data were 

compared with NIST-Mass Spectral Search Program available online at http://chemdata.nist.gov/mass-

spc/ms-search/. 

2.6.  Growth Experiment 

Growth experiments were conducted to determine growth curve and rate of the selected strains. Three 

selected bacterial strains were pre-enriched in 10 ml of nutrient agar medium (Oxoid) for 12 – 16 

hours at constant temperature of 30°C, shaking incubator 144 rpm. Afterwards, the pre-enriched 

culture was inoculated to 200 ml of respective mineral salts medium supplemented with 2% (w/v) 

xylose or glucose in 1 l of klett flask. The cultivation was performed at 30°C, within 3-5 hours. The 

turbidity of the growth culture was measured using klett colorimeter (Manostat Corporation). The data 

was processed with Microsoft® Excel. The klett unit was converted to natural logarithm and plotted 

against incubation time in hours. In order to derive the growth rate, linear regression line was 

calculated through the log phase and the rate was deduced from the slope.  

3. Result 

3.1  Selection of Microorganisms 

In this study, three distinct bacterial isolates were selected (table 1). All of them were able to use 2 % 

(w/v) cellulose as sole carbon source. Two of them were derived from low phosphate MSM while the 

other was selected from the high phosphate selective medium. All isolated bacterial cultures were able 

to live in the high salinity medium. 

 

Table 1. Selected Bacterial Isolates and Their Properties 

Strain Identifier Source1 Salinity MSM 

1LPCS2R2 Compost 1% Low phosphate 

1LPCS2R14 Compost 1% Low phosphate 

2HPCS1R4 Sludge 2% High phosphate 

 1
The location where the bacterial sample was isolated. Compost was derived 

from composting facility, and sludge was derived from shrimp’s pond 

3.2 Hydrophobic Inclusion 

Lipophilic dye, nile red, penetrated the plasma membrane of the selected cells and bound to the 

hydrophobic compound. Monochromatic light with a wavelength of 598 nm excited the non-polar 

substances bound nile red in the cells. The emission light was detected with microscope fluorescence 

and the results of the observation indicated variety of hydrophobic substances in the cells (figure 1). 

Bacterial strain 2HPCS1R4 contained two hydrophobic inclusions (figure 1B, red and blue arrow) in 

the cytoplasm. Whereas, the hydrophobic inclusion in 1LPCS2R2 was distributed around the plasma 

membrane (figure 1D, arrow). A small discrete inclusion was found at the edge of the cells (figure 

1D). Similarly, 1LPCS2R14 showed faint distributed inclusion (figure 1F), and small discrete 

inclusion (figure 1F, blue arrow). 

3.3 Analysfs of Hydrophobic Inclusion with Thin Layer Chromatography 

Treatment of 10 mg of cell dry mass of 1LPCS2R14, 1LPCS2R2 (figure 2) and 2HPCS1R4 (figure 3) 

with organic solvent (chloroform: methanol) released the hydrophobic content of the cells. In the TLC 

plate, the mixture of hydrophobic compound was separated using silica gel plates using mobile phase 

composed of hexane/diethyl ether/acetic acid. 1LPCS2R2 contained triolein-like hydrophobic 

compound (figure 2, arrow 3) and oleic acid-like hydrophobic compound (figure 2, arrow 4) which 

were overlapped to each other. Whereas, 1LPCS2R14 gave faint triolein-like hydrophobic band 
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(figure 2, arrow 5) and two discrete bands of oleic acid-like (figure 2, arrow 6). These respective bands 

lay slightly above the control bands. The 2HPCS1R4 contained different hydrophobic subtances which 

was comparably different with the previous two. The discrete band lay above the triolein-like 

hydrophobic band (figure 3, arrow 3). 

 

 

 

 

 

 

 

 

 

 

Figure 1. Fluorescence microscopy observation of 

three selected bacterial isolates (A) and (B) 

2HPCS1R4, (C) and (D) 1LPCS2R2, (E) and (F) 

1LPCS2R14. (A), (C) and (E) Light and (B), (D) and 

(F) fluorescence image of the respected bacterial 

strain: The white signal (red arrows) in the cytoplasm 

of bacterial cells was derived from interaction of a 

lipophilic dye (nile red) with hydrophobic substances. 

2HPCS1R4 had two kinds of hydrophobic inclusion 

(B) (red and blue arrows). Whereas 1LPCS2R2 and 

1LPCS2R14 had mainly membrane fluorescence (D), 

(F). Original magnification x 400. 

 

3.4 Gas chromatography analysis 
The elucidation of the identity of the hydrophobic compound in the TLC bands showed mixtures of 
different long chain fatty acid residues. The two discrete bands derived from bacterial strain 1LPCS2R2 

(figure 2, arrow 3 and 4) revealed some mixtures of methyl ester ranged from myristic acid (tetradecanoic 

acid) methyl ester (C14) (figure 4, peak A), small amount of pentadecanoic acid methylester (C15) (figure 

4, peak C, E), branched lauric acid (dodecanoic acid) methyl ester (figure 4, peak D), palmitic acid 

(hexadecanoic acid) methyl ester (figure 4, peak F, G, H). 

GC-MS analysis of two discrete bands from 1LPCS2R14 (figure 2, arrow 5, 6) showed some mixtures 

of fatty acid methyl ester predominantly composed of lauric acid (dodecanoic acid) methyl ester (C12) 

(figure 5, peak C), myristic (tetradecanoic acid) methyl ester (C14) (figure 5, peak D, F), pentadecylic 

acid methyl ester (C15) (figure 5, peak E, G), palmitic acid (hexadecanoic acid) methyl ester (figure 5, 

peak H), and margaric acid (heptadecanoic acid) methyl ester (figure 5, peak I). 
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Figure 2. Thin layer chromatography (TLC) of 

hydrophobic content from selected bacterial 

isolates. (A) Triolein, (B) oleic acid. They were 

served as TLC standard of triglyceride (arrow 1) 

and free fatty acids (arrow 2) respectively. (C) 

TLC of hydrophobic content of 1LPCS2R2. 

Chloroform-methanol-exracted 10 mg of 

1LPCS2R2 cell dry mass was analyzed with TLC. 

Two discrete bands (arrow 3, 4), which were 

overlapped each other, were observed after 

incubation of the TLC plate with iodine. (D) TLC 

of hydrophobic content of 1LPCS2R14. 

Chloroform-methanol-extracted 10 mg of 

1LPCS2R14 cell dry mass was analyzed with 

TLC. Three obvious discrete bands (arrow 5, 6) 

were detected. 

Figure 3. Thin layer chroma-tography (TLC) of 

hydrophobic content from 2HPCS1R4. (A) 

Triolein, (B) oleic acid. They were served as TLC 

standard of triglyceride (arrow 1) and free fatty 

acids (arrow 2) respectively. (C) TLC of 

hydrophobic content of 2HPCS1R4. Chloroform-

methanol-extracted 10 mg of 2HPCS1R4 cell dry 

mass was analyzed with TLC. A discrete band 

(arrow 3) was detected just above the triolein 

standard. 

 

Whereas, GC-MS analysis of hydrophobic substances in the cytoplasm of 2HPCS2R4 showed only 

few recognizable peaks (figure 6). They were palmitic acid (hexadecanoic acid) methyl ester (figure 6, 

peak A), oleyl alcohol (figure 6, peak B), and stearic acid (octadecanoic acid) methyl ester (figure 6, 

peak C). 
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Figure 4. Gas chromatography – mass 

spectroscopy analysis of hydrophobic content of 

1LPCS2R2. The hydrophobic content derived 

from discrete bands shown in figure 2, arrow 5 

and 6. The chromatogram showed different length 

of fatty acids of methyl ester ranged from C14 to 

C16. Peak A (ret. time 25.89 min.) and peak B 

(ret. time 26.94 min.) were methyl tetradecanoate; 

peak C (ret. time 28.5 min.) and peak E (ret. time 

29.86 min.) were methyl pentadecanoate; peak D 

(ret. time 28.85 min.) was 12-methyl- methyl 

tetradecanoate; peak F (ret. time 31.82 min.) and 

peak G (ret. time 33.67 min.) were methyl 

hexadecanoate: peak H (ret. time 36.45 min.) was 

8 methyl- methyl decanoate. 

Figure 5. Gas chromatography  –  mass 

spectroscopy analysis of hydrophobic content of 

1LPCS2R14. The hydrophobic content originated 

from TLC bands shown in figure 2, arrow 5. The 

chromatogram showed different length of fatty 

acids  of methyl ester ranged from predominantly 

C12 to C17. Peak A (ret. time 25.97 min.) and C 

(ret. time 31.23 min.)  were  methyl dodecanoate; 

peak B (ret. time 28.04 min.) was methyl 

tridecanoate;    peak D (ret. time 32,49 min.) was 

methyl tetradecanoate; peak E (ret. time 29.86 

min.) was methyl pentadecanoate; peak F (ret. 

time 31.82 min.) and peak G (ret. time 33.67 

min.) were methyl hexadecanoate; peak H (ret. 

time 36.45 min.) and peak J (ret. time) 37.08 min) 

were 8-methyl-methyl decanoate. 

3.5 Growth Kinetic of Selected Bacterial Isolates 

In order to evaluate whether the selected isolates are suitable for the industrial process, growth kinetic 

of selected bacterial isolates was investigated by incubating them in 2% (w/v) glucose and xylose. 

1LPCS2R14 showed different growth patterns. When glucose was used as a sole carbon source (figure 

7A), the log phase of 1LPCS2R14 commenced quite early, around 3
rd

 to 23
rd

 hours after inoculation. 

The calculated line of regression linear spanned the indicated times was y= 0.0469X + 3.8869, so that 

doubling time was 0.049 h
-1

. 1LPCS2R14 grew in xylose with doubling rates of 0.0248 h
-1

. The log 

phase spanned throughout the measuring time (figure 7B), however the linearity of the regression line 

from natural logarithm of klett unit vs incubation time was low (R
2
 = 0.9016). 1LPCS2R4 incubated in 

2% (w/v) glucose showed defined growth curve (figure 7C). The exponential phase was detected at 



8

1234567890

International Conference on Biomass: Technology, Application, and Sustainable Development  IOP Publishing

IOP Conf. Series: Earth and Environmental Science 65 (2017) 012026    doi   :10.1088/1755-1315/65/1/012026

12
th
– 18

th
 hours of incubation time. The rate of doubling time as appeared in the log phase was 0.29 h

-

1
. When the isolate was incubated in 2% (w/v) xylose (figure 7D), the doubling time was decreased to 

0.17 h
-1

 and the log phase started at the early phase. No lag phase was observed in the growth curve. 

Similarly, log phase of 2HPCS1R14 (figure 7E), started at the early phase, (0 – 15th hours of 

incubation time). The growth rate of the isolates was 0.16 h
-1

. However, when 2HPCS1R14 was grown 

in 2% (w/v) xylose (figure 7F), the doubling rate decreased dramatically to 0.089 h
-1

. 

 

 

 

 

Figure 6. Gas chromatography – mass 

spectroscopy analysis of hydrophobic content 

from 2HPCS1R4. The gas chromatography 

analysis of discrete band (figure 3, arrow 3) 

showed three major distinct peaks, (A) 

hexadecanoic acid (C16), (B) oleyl alcohol 

(C8), and (C) octadecanoic acid (C18). 

 

4. Discussion  

This explorative research was aimed to screen and characterize potential microorganisms which were 

able to utilize wood-derived sugars as energy and carbon source to accumulate triglyceride as 

feedstock for biodiesel production. Some potential bacterial strains were isolated from sludge of 

municipal sewage, 2HPCS1R4, and two bacterial strains from late phase of compost soil, 1LPCS2R2 

and 1LPCS2R14. All of them were potential bacterial strains derived from cellulose supplemented 

screening media. 

 

Optically, 2HPCS1R4 showed the most abundant hydrophobic inclusion aggregate in comparison to 

the other two isolates (figure 1B, arrow blue and red). There are numerous types of hydrophobic 

inclusion known so far. Rhodococus opacus strain PD630 forms inclusion bodies which consists of 

several agglomerations of fat bodies triglycerides. They are fully filled the cytoplasm of the cells and 

between inclusion bodies were bordered only with wall membrane layer separating them[17]. Some 

Actinobacter-like A. calcoaceticus ADP 1 showed less dense hydrophobic inclusions[18]. They are 

separated each other and formed spherical disc shape similar to 2HPCS1R4 as shown in figure 1B, 

blue and red arrows. In some colonies A. calcoaceticus ADP 1 lipid body inclusion showed only single 

colony as shown in 1LPCS2R2 and 1LPCS2R14. However, in this study, the identity of the three 

selected bacteria was not elucidated. In the 1LPCS2R2 and 1LPCS2R14, the whole cytoplasm seemed 

to illuminate fluorescence light and it. 
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Figure 7. Growth Curve of Selected Bacterial Isolates. (A) 1LPCS2R14 grown in 2% (w/v) of glucose 

as sole carbon source. Graphical plot of natural logarithm of klett unit vs incubation time indicated 

early log phase spanned from 3
rd

 hours to 23
rd

 hours. (B) 1LPCS2R4 grown in 2% (w/v) xylose as 

sole carbon source. Log phase emerged irregularly throughout the growth phase. (C) 1LPCS2R2 

incubated in 2% (w/v) glucose as sole carbon source. This bacteria when was grown in glucose 

adopted common growth phase. (D) 1LPCS2R2 incubated in 2% (w/v) xylose. Log phase was 

occurred already at the early phase of the bacterial growth (until 14
th

 hours). (E) 2HPCS1R14 

incubated in 2% (w/v) glucose. Log phase started at directly after inoculation and stopped at 10
th

 

hours of incubation time. (F) 2HPCS1R14 incubated in 2% (w/v) xylose. Log phase appeared 

throughout the measurement (until 22
nd

 hours of incubation time). Afterwards the growth curve 

became steady. 

 

Almost encased the signal from the lipid bodies. Spiekermann and coworkers have reported that nile 

red staining is not effective to detect hydrophobic inclusion in the gram-positive bacteria [13]. The 

gram analysis of 1LPCS2R2 and 1LPCS2R14 showed that these bacteria were gram-positive (data not 

shown), therefore the background signal was very high. Alternative method for identification of lipid 
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substances in bacteria is sudan black staining[19]. However, this technique cannot be used for 

characterization of hydrophobic inclusion in viable bacterial cells. Because it requires replica that may 

increase the complication of the screening method which is unfavorable when the study has to deal 

with large number of bacterial strains. Nile red offers practical solution for large scale screening of 

hydrophobic-containing microorganisms. However, the limitation of using the dye for gram-positive 

bacteria can be problematic. Example of these bacteria derived from genus Nocardia and Rhodococcus 

which are known as lipid-accumulating strains[15]. Therefore establishment of alternative lipophilic 

dye that can be used to screen lipid-containing viable gram-positive bacterial cells is essential. 

 

In this study, TLC was preferred as low cost technique to screen large number of bacteria derived from 

fluorescence microscopy initial selection for their ability to accumulate hydrophobic substances. The 

results showed that an unknown substance was found in 1LPCS2R2. The hydrophobic substances 

derived from the cells showed two overlapped discrete bands. These spots had comparable retardation 

factor with the reference TAG. The GC-MS analysis revealed that collection of various lipid with 

various alkyl length (C14 – C17) was observed. It was not clear whether the substance was TAG 

because it was subjected to methanolysis which convert the chemical nature of non-volatile lipid to 

volatile compound, fatty acid methyl ester. 

 

This study evaluated also the prospect of the screened microorganisms for industrial application. 

Growth rate in the fermentation condition should be high to meet the requirement for industrial 

application. Therefore, kinetic study of the selected bacterial candidate was performed with glucose 

and xylose as sole carbon source. The selection was based on the fact that both sugars are the most 

available monosaccharide on the Earth. The result of the kinetic study with the isolated bacteria 

showed that 1LPCS2R2 was the fastest growth bacteria (0.29 h
-1

). This isolates showed regular 

defined lag, log, and stationary phase while the other did not show such characteristic. However, the 

doubling rates of the isolate was reduced to half when the isolate was incubated with . The utilization 

of xylose requires the ability of the microorganisms to adopt xylose isomerase, Weimberg or XR/XDH 

pathways (xylose reductase and xylitol dehydrogenase enzymes)[20,21,22]. Some bacteria, such as E. 

coli, prefer to utilize glucose, using glycolytic pathway which end up in tricarboxylic acid cycle, than 

xylose[23]. This bacterium has carbon catabolite repression (CCR) that causes sequential consumption 

of glucose and xylose. The latter is a major component of hemicellulose with diverse proportion which 

is depended on type of the woods. Softwood comprises of maximum 10% (w/w) while hardwood 25% 

(w/w) dry weight of xylose[22]. 

 

In conclusion, the study demonstrated an effort to isolate new strains that utilized wood derived sugars 

which are majority component of lignocellulosic biomass and accumulated TAG which are feedstock 

for biodiesel production. Fluorescence microscopy revealed three isolates that accumulated 

considerable amount of hydrophobic compound. Two isolates, 1LPCS2R2 and 1LPCS2R14, seemed 

to show signals derived from hydrophobic-like membrane-bound substances which is typical for gram-

positive bacteria. TLC study showed that two overlapping discrete bands were observed for 

1LPCS2R14 and 1LPCS2R2 whereas 2HPCS1R4 showed only single band with the height just above 

the reference band of lipid. GC analysis confirmed the presence of the lipid that consisted of different 

C14-C16 fatty acid length. Growth kinetic analysis showed that 1LPCS2R2 was the most rapidly 

growing isolate among the three in two model carbon sources (glucose and xylose). The result of study 

proposed strain that can be used for biodiesel production. 
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