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Abstract. Precise estimation of the thermal physical properties of materials, boundary 

conditions, heat flux distributions, heat sources and initial conditions is highly desired 

for real-world applications. The inverse heat conduction problem (IHCP) analysis 

method provides an alternative approach for acquiring such parameters. The 

effectiveness of the inversion algorithm plays an important role in practical 

applications of the IHCP method. Different from traditional inversion models, in this 

paper a new inversion model that simultaneously highlights the measurement errors 

and the inaccurate properties of the forward problem is proposed to improve the 

inversion accuracy and robustness. A generalized cost function is constructed to 

convert the original IHCP into an optimization problem. An iterative scheme that 

splits a complicated optimization problem into several simpler sub-problems and 

integrates the superiorities of the alternative optimization method and the Broyden-

Fletcher-Goldfarb-Shanno (BFGS) algorithm is developed for solving the proposed 

cost function. Numerical experiment results validate the effectiveness of the proposed 

inversion method. 

1.  Introduction 

The IHCP analysis method is often employed to estimate the thermal physical parameters of materials, 

boundary conditions, initial conditions, heat flux, heat sources, etc., from the given temperature 

measurement data in the field of the thermal engineering. In light of providing an effective way for 

acquiring such parameters, the IHCP method has attracted growing attentions. 

The efficiency of the inversion algorithms has a great influence on applications of the IHCP 

method. A variety of algorithms have been developed for solving the IHCP, e.g., the Levenberg-

Marquardt method [1, 2],the conjugate gradient technique [3, 4], the standard Tikhonov regularization 

(STR) algorithm [5], the particle swarm optimization technique [6, 7], etc. The interesting readers can 

refer to [8-15] for more details. In light of the complexity of the problem, generally, figuring out an 

inversion algorithm with low computational cost and high inversion accuracy remains a crucial issue. 

The ill-posed nature of the IHCP will give rise to a formidable quandary, i.e., small perturbations 

on the input data may lead to lager fluctuations of the inversion solutions, which may make the final 

results meaningless. Conventional inversion algorithms emphasize the measurement errors and fail to 
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take into account the inaccurate properties on the forward problem derived from the facts such as (1) 

the assumptions and simplifications of a real physical problem; (2) the imprecise initial conditions, 

boundary conditions, geometric conditions and thermal physical properties of materials; and (3) the 

discretization of the original problem and the approximation of the numerical computation. As a result, 

developing an algorithm that simultaneously highlights the inaccurate properties of the measurement 

data and the forward problem may be essential for improving the inversion precision. In this work an 

inversion model is put forward to simultaneously underline the inaccurate properties of the forward 

problem and the measurement data is proposed to improve the inversion accuracy and robustness. A 

cost function is constructed to convert the original IHCP into an optimization problem. An efficient 

algorithm is developed for searching for the optimal solution of the proposed cost function. Numerical 

experiment results validate effectiveness of the proposed method.  

2.  Mathematical model 

There are two key steps in seeking for the solution of the IHCP: the forward problem and the inverse 

problem. In this section, we first revisit the mathematical models for the IHCP. 

2.1.  Forward problem 

By means of employing an effective numerical method, e.g., the finite element method, the finite 

volume method, etc., the forward problem estimates the temperature distribution from the given 

conditions of the determined solutions, which can be specified as follows [16]: 

 

                                                         ( )p

T
c T

t



 


                                                           (1) 

 

where  , pc  and   mean the density, heat capacity and heat conductivity coefficient, 

respectively; T  represents the temperature distribution and t  implies the time index.  

2.2.  Traditional inversion model  

The inverse problem estimates initial conditions, boundary conditions or thermal physical parameters 

of materials from the given temperature measurement data. For compact notation, the inverse problem 

can be written as: 

 

                                                                 ( ) T y+ r                                                                     (2) 

 

where ( )T   implies the predicted temperature distribution data from equation (1);   stands for 

unknown variables; y  means the temperature measurement data; r  represents the measurement 

noises. In light of the ill-posed attribute, the major challenge in solving the IHCP stems from the 

solution of the inverse problem. In accordance with the optimization theory and the Tikhonov 

regularization method, the solution of equation (2) is often cast into an optimization problem. 

2.3.  Generalized inversion model 

In equation (2), the inaccurate property of the measurement data is highlighted. In practical 

applications, however, the computation of the forward problems may be inaccurate derived from the 

facts such as (1) the assumptions and simplifications of a real physical problem; (2) the imprecise 

initial conditions, boundary conditions, geometric conditions and thermal physical properties of 

materials; and (3) the discretization of the original problems and the approximation of the numerical 

computation. In this study, an inversion model is put forward to emphasize the above inaccurate 

attributes, which can be formulated as: 
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                                                  ( ) T B y+ r                                                               (3) 

 

where B  represents the inaccurate attributes of the forward problem. It is necessary to mention 

that in the field of the econometrics equation (3) is also called as the semi-parametric regression model. 

3.  Design of the cost function 

In accordance with the Tikhonov regularization method, the solution of equation (6) can be formulated 

into the following optimization problem: 

 

                                                1 1 2 2
,

min , ( ) ( )E     


 
B

B B                                                 (4) 

 

where ( , )E B  measures the data fidelity; 1  and 2  mean the regularizers; 1  and 2  are the 

regularization parameters. 

In this study, the combination estimation that integrates the superiorities of the least squares 

estimation and the M-estimation is used to measure the data fidelity [17], which is specified as: 
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where 0 1  ; || ||  defines the 2-norm and ( )   means an M-estimation function [17-19]. 

In this study, the regularizers are defined as: 
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where 0p  , and | |  is an absolute value operator. 

For convenient computations, the absolute value function is approximated by [20]: 

 

                                                                2 1/2| | ( )x x                                                                       (8) 

 

where 0   is a predetermined parameter. As a result, equation (9) can be approximated by: 
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In this work, the G-M function is employed, which can be formulated by: 

 

                                                          2 2( ) 0.5 / ( )f x x x                                                               (10) 

 

where 0   is a scaling parameter. 

Finally, we can obtain a generalized cost function for solving the IHCP, i.e.  
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where ( )j j j jT  r B y . 

4.  Solving of the cost function 

The direct solution of equation (11) is challenging. In accordance with the computational strategy 

reported in [21-23], equation (11) can be decoupled as the following sub-problems: 
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where superscript k  represents the index of iterations. 

Due to the excellent numerical performances, the BFGS algorithm is used to minimize equations 

(12) and (13), and the computation flowchart can be outlined as follows [24, 25]: 

Step 1. Determine the cost function ( ) x , and specify the initial value 
(0)

x  and other algorithmic 

parameters. 

Step 2. Set 0 nH I , estimate the gradient 
(0)

0 ( )g x , and let 0k  . 

Step 3. Update the search direction: 

 

                                
( )k

k k d H g                               (14) 

 

Step 4. Set 

                              
( 1) ( ) ( )k k k

k
  x dx                                 (15) 
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1 ( )k

k  

 g x                              (16) 

 

where k  can be computed by solving the following minimization problem: 

( ) ( ) ( ) ( )

0
( ) min ( )k k k k

k


   


  d dx x                  (17) 

 

Step 5. If 1|| ||k  g , terminate the iteration and output the solution; otherwise return to Step 6. 

Step 6. Set 
( ) ( 1) ( )k k k  xu x , 

( )

1

k

k k g g , and compute 1kH  using equation (18); set 

1k k  , and loop to Step 3. 
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Eventually, we obtain the following iterative technique to solve equation (11): 
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Step 1. Specify the algorithmic parameters and initial solutions of the unknown variables   and 

 . 

Step 2. Update variable   via solving equation (12) using the BFGS algorithm. 

Step 3. Update variable   via solving equation (13) using the BFGS algorithm. 

Step 4. Return to Step 2 until a predetermined stopping condition is met. 

5.  Numerical experiments and discussions 

The proposed inversion procedure is called as the generalized semiparametric inversion (GSI) 

algorithm. In this section, numerical experiments are implemented to test the performances of the GSI 

algorithm, and the inversion quality is compared with the STR method.  

All algorithms are implemented using the MATLAB software. The forward problems are 

calculated by the finite element method. We use the relative errors (RE) to assess the inversion quality, 

which can be specified as follows: 
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|| ||
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|| ||


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 


                                                    (19) 

 

where True  and Estimated  mean the true values and the estimated values, respectively. 

5.1.  Case 1 

An inversion task of the three boundary conditions is implemented to test the efficiency of the GSI 

algorithm, and the forward problem is described by: 
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where ( ) 8000 3000sin(2.5 / 0.8)x x   , 8700  3kg / m , [0,300]t , 385pc  J / (kg K)  

and 400  W / (m K) . 

The inverse problem estimates the boundary conditions, a , b  and c , at 0x  , 0.6y   and 

0.8x   from the given temperature data, and the true values for a , b  and c  are 520, 620 and 400. 

The simulated data is used to serve as the temperature measurement data. To simulate the inaccuracy 

of the forward problem, boundary condition at 
2 2 2( 0.4) ( 0.3) 0.1x y     is perturbed into 780. 

The algorithmic parameters of the GSI algorithm are defined as 0  , 1 0.0001  , 2 0.04   and 

1p  . The regularization parameter for the STR method is 3×10-6. The initial values of variables a , 

b  and c  for the both methods are 710, 720 and 700, respectively. Figures 1-4 are the estimation 

results and the REs for the competitors. 



6

1234567890

International Symposium on Resource Exploration and Environmental Science  IOP Publishing

IOP Conf. Series: Earth and Environmental Science 64 (2017) 012094    doi   :10.1088/1755-1315/64/1/012094

 

 

 

 

 

 

0 1 2 3 4 5 6
400

450

500

550

600

650

700

750

Number of iterations

A
m

p
lit

u
d
e
 v

a
lu

e
s

 

 

Variable a

Variable b

Variable c

           
0 1 2 3 4 5 6

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

Number of iterations

R
e
la

ti
v
e
 e

rr
o
rs

 

Figure 1. Estimated results for the STR method.     Figure 2. Relative errors for the STR method. 
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Figure 3. Estimated results for the GSI algorithm.    Figure 4. Relative errors for the GSI algorithm.  

 

The estimation results and the relative errors from the STR technique are illustrated in Figures 1 

and 2. Numerical simulation results indicate that the STR method can ensure a stable inversion 

solution. Nevertheless, the final inversion results are not satisfactory. Especially, the final estimation 

results for a , b  and c  are 537.44, 629.41 and 417.94, and the RE, 2.96%, is higher than the GSI 

technique. Besides, in Figure 2, it can be found that the inaccuracy of the forward problem results in 

the oscillation of the solutions in the process of the numerical computation. 

The result estimated by the GSI algorithm is shown in Figure 3. Numerical simulation results 

confirm that the GSI algorithm can alleviate the numerical instability of the IHCP in light of the fact 

that the Tikhonov regularization method is introduced to the cost function. With the consideration of 

the inaccuracy of the forward problem, the GSI algorithm shows satisfactory numerical performances, 

and the estimation results of variables a , b  and c  gradually approximate the true values with the 

increment of the number of iterations. In Figure 3, the final inversion results for variables a , b  and c  

are 517.01, 625.14 and 397.70, which closely approximates the true values, 520, 620 and 400. In 

Figure 4, the REs monotonously decrease with the increase of the number of iterations, and the final 

RE of the GSI method is 0.74%, which is far lower than that of the STR technique. The encouraging 

results indicate that the GSI algorithm is competent in solving the IHCP. 

5.2.  Case 2 

In this case, a complex inversion problem of the time-varying nonlinear boundary condition is 

simulated. The boundary condition at 0y   is ( ) sin( /150)t a b t   , in which 500a   and 

400b  . The forward problem is described by: 
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where 400  W / (m K) , 8700  3kg / m , [0,150]t  and 385pc  J / (kg K) . 

The inverse problem estimates the boundary condition at 0y  . For easy calculation, the variables 

a  and b  in the formula of the boundary condition are estimated. Boundary conditions at 0x  , 

0.6y  , 0.8x   and 
2 2 2( 0.4) ( 0.3) 0.1x y     are perturbed into 380, 480, 690 and 780 to 

simulate the inaccuracies of the forward problem. The regularization parameter of the STR method is 

defined as 1×10-5. The algorithmic parameters of the GSI algorithm are specified as 0  , 1 0.01   

and 
4

2 1 10   . The initial values for the both algorithms are 660 and 300. The estimation results 

and the REs for the STR technique and the GSI algorithm are shown in Figures 5-8. The REs for the 

both methods are presented in Figure 9. 
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Figure 5. Estimated results by the STR method.      Figure 6. Relative errors for the STR method. 
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Figure 7. Estimated results by the GSI algorithm.    Figure 8. Relative errors for the GSI algorithm. 
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Figure 9. Final estimation results of the GSI method and the STR algorithm. 

 

The estimation results and the REs for the STR method are presented in Figures 5 and 6, 

respectively. For the STR method, the final estimation results for unknown variables a  and b  are 

539.24 and 370.42, and the RE is 7.67%. Obviously, the estimation accuracy of the STR method is 

lower than that of the GSI method. 

The estimation results of the GSI technique for variables a  and b  are presented in Figure 7. As 

can be expected, for the time-varying inversion problem, the GSI algorithm shows satisfactory 

numerical performances. The final estimation results for variables a  and b  are 500.83 and 402.50, 

which approximates the true values, 500 and 400. Meanwhile, it can be seen from Figure 8 that the 

REs gradually decreases with the increase of the number of iterations, and the final RE is 0.41%, 

which is far lower than the STR technique. 

Figure 9 presents the final boundary condition estimation results for the both methods. Obviously, 

when the inaccuracy of the forward problem is emphasized, the final estimation results from the GSI 

algorithm are in a better agreement with true boundary conditions as compared with the STR method, 

which indicate that the GSI method is highly suitable for solving the IHCP. 

6.  Conclusion 

Different from traditional inversion methods, in this study a new inversion model that simultaneously 

highlights the measurement errors and the inaccurate properties of the forward problem is proposed to 

improve the inversion accuracy and robustness. With the assistance of the Tikhonov regularization 

method, a cost function is constructed to convert the original IHCP into an optimization problem. An 

iterative scheme that splits a complicated optimization problem into several simpler sub-problems and 

integrates the superiorities of the alternative optimization technique and the BFGS algorithm is 

developed to search for the optimal solution of the proposed cost function. Numerical experiment 

results indicate that the proposed method can ensure a stable numerical solution and improve the 

inversion accuracy and robustness, and the numerical implementation is easy. For the cases simulated 

in this study, excellent numerical performances and satisfactory results are observed, which indicates 

that the proposed algorithm is competent in solving the IHCP. As a consequence, a promising 

inversion algorithm is introduced for the solution of the IHCP. 
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