
 
 
 
 
 
 

Synthetic Over Sampling Methods for Handling Class 
Imbalanced Problems : A Review 

B Santoso1, H Wijayanto1, K A Notodiputro1 and B Sartono1 
1 Department of Statistics, Faculty of Mathematics and Natural Sciences, Bogor Agricultural 
University, Indonesia. 
 
  
Email :   budsant.bs@gmail.com, hari_ipb@yahoo.com, khairilnotodiputro@gmail.com, 

bagusco@gmail.com 

Abstract. Class imbalanced commonly found in any real cases. Class imbalanced occur if one 
of the classes has smaller amount, called minority class, than other class (majority class). The 
problem of imbalanced data is usually associated with misclassification problem where the 
minority class tends to be misclassified as compared to the majority class. There are two 
approaches should be performed to solve imbalanced data problems, those are solution at data 
level and solution at algorithm level. Over sampling approach is used more frequently than the 
other data level solution methods. This study gives review of synthethic over sampling 
methods for handling imbalance data problem. The implementation of different methods will 
produce different characteristics of the generated synthetic data and the implementation of 
appropriate methods must be adapted to the problems faced such as the level and pattern of 
imbalanced data of data available. Results of the review show that there is no absolute methods 
that are more efficient in dealing with the class imbalance. However, the class imbalance 
problem depends on complexity of the data, level of class imbalance, size of data and classifier 
involved. Determination of over sampling strategy will affect the outcome of the over 
sampling. So it is still open better development oversampling methods for handling the class 
imbalance. The selection classifier and evaluation measures are important to get the best 
results. Statistical test approach is needed to assess the theoritical propertis of synthetic data 
and evaluate missclassification in addition to the evaluation methods that have been used. 

1.  Introduction 
Class imbalanced  commonly found in any real cases. Class imbalanced occur if one of the classes has 
smaller amount, called minority class, than other class (majority class). The problem of imbalanced 
data is usually associated with misclassification problem where the minority class tends to be 
misclassified as compared to the majority class. Problem rises when data of minority class contain 
important information and become the focus of attention of research so that errors in classification will 
lead to errors in decision-making especially in prediction accuracy of minority class.  

There are two approaches should be performed to solve imbalanced data problems, those are 
solution at data level and solution at algorithm level [1]. Solution at data level is applied by balancing 
the distribution of the majority and minority class through methods of under sampling, over sampling 
or combination of both methods. Solution at algorithm level is applied by modification in classifier 
methods or optimize the performance of learning algorithm. The advantage of the data level is can use 
independent of the classifier selected.  
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In under sampling process, data on majority class are reduced or eliminated some data to balance 
the class distribution, while over sampling process is done by adding the data on minority class. The 
process of balancing the distribution of data can be achieved by performing under sampling and over 
sampling simultaneously, termed combination or hybrid. Over sampling approach is used more 
frequently than under sampling since under sampling method will eliminate data in the majority class 
thus causing lost of important information of the data. According to Batista et al. [2] in general, over 
sampling method gives better results than under sampling method. The famous over sampling method 
is the Synthetic Minority Over Sampling Technique (SMOTE). However, the SMOTE method still has 
some weaknesses hence it motivates the research development to overcome the problem of SMOTE.  

This paper will review several over sampling methods which used to solve the imbalanced data 
problems, those were SMOTE and development methods of SMOTE such as SMOTE-TL-ENN, 
SMOTE RSB, Borderline-SMOTE and Safe Level SMOTE. 

2.  Evaluation measures 
Most of evaluation measures for two class problem are built by confusion matrix as illustrated in Tabel 
1. The class label of the minority class is positive and the class label of the majority class is negative. 
The first row of the table is the actual class label and the first column present their predicted class 
label. TP and TN denote the number of positive and negative examples that are classified correctly, 
while FN and FP denote the number of misclassified positive and negative examples respectively. 
  

Table 1. Confusion matrix.  

  
Predicted class 

  Yes No 
Actual Yes TP: True positive FN: False negative 
Class    
 No FP: False positive TN: True negative 

 
To evaluate class imbalanced, classification accuracy is not sufficient as a standard performance 

measure. Classification accuracy can not be used because it does not specifically describe the 
classification of a particular class. Receiver Operator Characteristics (ROC) analysis, Area Under the 
ROC Curve (AUC) and metrics such as precision, recall and F-value more better to understand the 
performance on the minority class. 
Precision, recall and F-value can be expressed as: 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦   =
𝑇𝑃 + 𝑇𝑁

(𝑇𝑃 + 𝐹𝑃 + 𝑇𝑁 + 𝐹𝑁)
 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛   =
𝑇𝑃

(𝑇𝑃 + 𝐹𝑃)
 

 

𝑅𝑒𝑐𝑎𝑙𝑙   =
𝑇𝑃

(𝑇𝑃 + 𝐹𝑁)
 

  

𝐹 − 𝑣𝑎𝑙𝑢𝑒   =
1 +   𝛽!   𝑅𝑒𝑐𝑎𝑙𝑙  𝑥  𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛
𝛽!  𝑅𝑒𝑐𝑎𝑙𝑙 + 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛

 

Where β corresponds to relative importance of precision vs. recall and it is usually set to 1.  
The goal of evaluation in class imbalance is to improve the recall, without sacrificing the precision. 

However, the recall and precision goals are often conflicting and attacking them simultaneously may 
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not work well, especially when one class is rare. The F-value incorporates both precision and recall, 
and the “goodness” of a learning algorithm for the minority class can be measured by the F-value. 
While ROC curves represent the trade-off between values of TP and FP, the F-value basically 
incorporates the relative effects/costs of recall and precision into a single number [3].  ROC curve 
value under ideal conditions (0.100) indicates that all the positive samples were classified correctly 
and no negative sample were classified as positive sample. 

3.  Current approaches for handling class imbalance 

3.1.  Solution at data level 
Solution at data level is applied by balancing the distribution of the majority and minority class 
through methods of under sampling, over sampling or combination of both methods. 

• Under sampling 
In under sampling, data on majority class are reduced or eliminated some data to balance the 
class distribution. The simple approach of under sampling method namely RUS (Random 
Under Sampling) where data on the majority of reduced class randomly. Furthermore, various 
developing methods under sampling conducted by Tomek [4] is by way of modification of 
Condensed Nearest Neighbor (CNN) and Tomek-Link. Furthermore Kubat and Matwin [5] 
using the method of One Side Selection (OSS). Laurikkala [6] proposed a new method, 
namely Neighborhood Cleaning Rule (NCR) which proved to be better than simple random 
and OSS. Cluster-based approach proposed by Yoon [7] and followed by the Yen and Lee [8]. 

• Over sampling 
Procedure in over sampling by adding the data on minority class to balance class distribution. 
Over sampling approach is used more frequently than under sampling since under sampling 
method will eliminate data in the majority class thus causing lost of important information of 
the data. The simple over sampling method is the Random Over Sampling (ROS), that is 
carried out by balancing the distribution of data through the application of minority data 
duplication at random. However, the method has the disadvantage that ROS cause problems 
overfitting [9]. To solve this problem, many research on methods over sampling conducted 
among others Chawla et al. [3], Batista et al. [2], He et al. [10], Han et al. [11], 
Bunkhumpornpat et al. [12], Tang and Chen [13], Stefanowski and Wilk [14], Cohen et al. 
[15], Napierala el at [16] and Ramentol et al. [1]. 

• Hybrid 
Hybrid methods combine the under sampling and over sampling methods by eliminating the 
data from majority class and adding the data from minority class to balance class distribution. 
Research on hybrid method conducted by Barandela et al. [17].  

3.2.  Solution at algorithm level 
Solution at algorithm level is applied by modification in classifier methods or optimize the 
performance of learning algorithm on unseen data.  

• Cost sensitive learning 
Another way to improve the performance of classifier is by applying cost for minority class 
distribution. In solution at data level, classifier try to minimize the number or errors with new 
data when the cost of different errors are equal. In many real-world applications the cost of 
different errors are often unequal. For example in medical diagnosis, the cost of erroneously 
diagnosing a patient to be healthy may be much bigger than that of mistakenly diagnosing a 
healthy person as being sick. Research on cost sensitive learning carried out by Veropoulos 
[18], Ting [19] and Zhou and Liu [20].  

• Ensemble 
Ensemble is a combination of multiple classifiers to improve and increase the prediction 
accuracy. In past few yers, ensembles have emerged as a promising technique with the ability 
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to improve the performance of weak classification  algorithms [21]. In the field of class 
imbalance, ensembles have mainly been used to combine the result of several classifiers. 
Research using ensemble approach undertaken by Sun et al. [22], Freund and Schapire [21], 
Schapire and Singer [23], Guo and Viktor [24], Liu et al. [25] and Chawla et al. [3]. 

4.  Selected synthetic over sampling approaches 
Over sampling approach is a widely used method to solve the imbalanced data. According to Batista et 
al. [2] in general, over sampling method gives better results than under sampling method. When data 
is highly imbalance, significant differences between majority dan minority class can be handled by 
over sampling methods.  

The simple over sampling method is the random over sampling, that is carried out by balancing the 
distribution of data through the application of minority data duplication at random. Chawla et al. [26] 
proposed a new technique, named SMOTE, to generate synthetic data based on the distance between 
the minority data and the closest minority data therefore the new synthetic data will be formed 
between the two minority data.  

Although SMOTE is quite effective in improving the classification accuracy of the minority data, 
but there are still problems, among others, that is the occurrence of overgeneralization. Data synthetic 
result of SMOTE is still possible to spread on both minority and majority data, hence it will reduce the 
performance of classification. 
Formula to generate synthetic data by SMOTE can be expressed as 

𝐷!"# = 𝐷! + 𝐷! − 𝐷! ×𝛿 

Where 𝐷!"# = synthetic data, 𝐷!  = examples from minority, 𝐷! = one of k-nearest neighbor from 𝐷! , 
𝛿 = random number between 0 and 1 

To solve the SMOTE problems, some researches are conducted to modify SMOTE in order to 
create more effective technique in improving the classification performance. The development of 
SMOTE is mostly done in two ways, the first is to improve the synthetic data results of SMOTE [2,1]. 
The second way is to first determine which location will be choose for data generating as it is expected 
that the result of data generating will exactly found in the data minority area [11,12]. 

Batista et al [2] succeeded in correcting the SMOTE data by deleting the synthetic data located in 
the area of minority data through the Tomek Links (SMOTE-Tomeks links). In addition to the method 
of Tomek Links [4], Batista et al. [2] also improved the synthetic data on both data (majority and 
minority) by using the Edited Nearest Neighbor (SMOTE-ENN). Meanwhile Ramentol et al. [1] used 
the Rough Set theory to improve synthetic data generated by SMOTE, that is the SMOTE-RSB. 

Han et al. [11] divided three location based on the amount of majority data in the nearest neighbors 
of minority data. If the majority data are all around the nearest neighbors, then the area is called noisy. 
If the majority data around the nearest neighbors are found higher than or equal to the minority, the 
area is called borderline. Meanwhile if most of/all data around the nearest neighbors are the minority 
data, then the area is called safe. Han et al. [11] focused on the borderline area located on the 
boundary between the minority and the majority of data. Data generating through SMOTE is 
performed in the borderline areas, called the Borderline SMOTE.  

Moreover, Bunkhumpornpat et al. [12] paid attention to the safe area to perform over sampling 
based on the ratio between the number of minority data and the nearest neighbors. This method wants 
to make sure that the synthetic data that will be generated through the SMOTE are in areas that are 
completely safe. Bunkhumpornpat et al. [12] defines five criteria based on the ratio of safe level. 
Therefore the method is called the Safe Level SMOTE. 
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5.  Discussion 
We can compare several over sampling methods by located, level of class imbalance, amount of over 
sampling, number of k-nearest neighbour and choosen classifiers. Based location of examples, we can 
divided into 3 categories: safe, borderline and noisy examples [5,11,16,1]. 

• Borderline examples are located in the area surrounding class boundaries, where the minority 
and majority classes overlap. 

• Safe examples are placed in relatively homogeneous areas with minority class. 
• Noisy examples are individuals from one class occurring in areas of the other class. 

SMOTE, SMOTE-TL-ENN and SMOTE RSB methods using all of minority examples in whole 
location to create to generate synthetic data. Batista et al. [2] use application of Tomek Links and 
ENN as cleaning method over the dataset obtained by the application of SMOTE. Ramentol [1] only 
selects the minority synthetic data that belong to the lower approximation using Rough Set Theory 
until the dataset is balanced. 

Borderline-SMOTE and Safe Level SMOTE only use specific location to generate synthetic data. 
After determining an example of a minority in a specific location and then the process of SMOTE 
done to generate synthetic data.  

 
Table 2. Comparative review. 

 Location  Cleaning 
data 

Number of 
K-NN 

Amount 
OS 

Random 
number 

SMOTE Borderline, noisy 
and safe 

No 5 various 0 to 1 

SMOTE-TL-ENN Borderline, noisy 
and safe 

Yes 3 various 0 to 1 

SMOTE RSB Borderline, noisy 
and safe 

Yes 5 balance 0 to 1 

Borderline-SMOTE Borderline No 5 various 0 to 0.5 
Safe Level-SMOTE Safe No 5 various various 
 
Table 2 indicate that various methods use different strategy to handle class imbalance. Several 

methods using number of k-nearest neighbour set to 5 except SMOTE-ENN. Nearest neighbor 
indicating the similarity of the data. The problem is that it could be the nearest neighbor has a 
considerable distance. It can lead to overgeneralization. Determination of nearest neighbors can be 
evaluated further by using alternatives such as radius size or percentage. 

In over sampling methods, we can add data on the minority so close to the amount of data on the 
class of the majority or equal as the majority class. In SMOTE, Borderline-SMOTE and Safe Level 
methods, the minority class was oversampled at 100%, 200%, 300%, 400%, 500%. The amount of 
data in oversampling depend on level of imbalance. Variations in the amount of oversampling cause 
changes in accuracy and other measures. In SMOTE RSB method, minority data was added so that the 
amount of data equal to a majority data.  

Based on the formula in SMOTE, the distance between the data minority and its nearest neighbors 
multiply by random number between 0 and 1. If the random number is close to 0 then the synthetic 
data will be similar to the origin minority data. Conversely, if the random number is close to 1 then the 
synthetic data will be similar to nearest neighbors. Problems that can occur is if the random number is 
about 0.5 it is possible that the synthetic data similar to the data of the majority. This is the cause of 
overgeneralization. 

In the Borderline-SMOTE, the random number is determined between 0 to 0.5 in hopes of 
synthesis data will be adjacent to the minority data. Different strategies used in other oversampling 
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methods. Safe level SMOTE use RSL (Ratio of Safe Level) to determine random number. SMOTE-
TL-ENN and SMOTE-RSB use cleaning data to improve synthetic data generated by SMOTE.  

 
Table 3. Winner of AUC Result by percentage of minority 

 Winner of AUC Result* 
 ≤ 5 % >5 % 
SMOTE - 2 
SMOTE-TL-ENN 3 1 
SMOTE RSB 10 5 
Borderline-SMOTE 2 3 
Safe Level-SMOTE 5 2 

                     *) Ramentol et at. [1] using 44 datasets 
 

Table 3 shows the effectiveness of information over sampling method using several datasets based 
Area Under the ROC Curve (AUC). The table is divided into two levels of class imbalance, namely 
class imbalance below 5 percent and above 5 percent. 

Based on Table 3, we can’t find best method in handling the class imbalance. Ramentol et al. [1] 
using 44 datasets with several over sampling methods. As a result, there is no better method on all 
datasets. SMOTE only effective on 2 dataset, SMOTE-TL-ENN effective in four datasets, Borderline-
SMOTE effective at 5 dataset. An effective methods in many datasets are Safe Levels-SMOTE (7 
dataset) and SMOTE RSB with 15 datasets. SMOTE only effective in percentage of minority up to 5 
percent, while others methods effective in any imbalance level. The same result is done by Batista et 
al. [2] which by using 16 datasets, there are not the most efficient method. SMOTE efficient at 2 
dataset, SMOTE-TL efficient in four data sets and SMOTE-ENN efficient at 9 datasets. 

The results of the research by Han et al. [11] indicate that Borderline-SMOTE more efficient than 
SMOTE and ROS using the F-value and Recall. However there is one dataset that showed the opposite 
results. The experiments by Bunkhumpornpat et al. [12] show that the performance of Safe-Level-
SMOTE evaluated by Precision and F-value are better than that of SMOTE and Borderline-SMOTE 
when decision trees C4.5 are applied as classifiers.  

The use of classifier method affects effectiveness. In SMOTE method, the effectiveness of different 
classifier methods based on the dataset used and evaluation measures. The use of C.45 method, Naive 
Bayes and Ripper show different efficiencies according to the different datasets and different measures 
matrices. The same situation also happened on research conducted by Han et al. [11] and Batista et al. 
[2].  

Further research is needed to evaluate the classification method is more appropriate in dealing with 
class imbalance. Exploration statistically in the data results over sampling is required to determine the 
characteristics of the synthetic data is generated. Based on synthetic data characteristics can be 
determined more precise method used to overcome the problem of class imbalance. 

6.  Conclusion  
Results of the review show that there is no absolute methods that are more efficient in dealing with the 
class imbalance. However, the class imbalance problem depends on complexity of the data (located of 
minority data), level of class imbalance, size of data and classifier involved. Determination of the 
distance and the number k-nearest neighbors will affect the outcome of the over sampling. So it is still 
open better development oversampling methods for handling the class imbalance. The selection 
classifier is important to get the best results. 
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In general, the evaluation measure is still much to do with the measures on confusion matrices such 
as accuracy, precision, recall, F-value and ROC. Statistical test approach is needed to assess the 
theoritical propertis of synthetic data and evaluate missclassification. 
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