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Abstract. We purpose a combined estimator of Fourier series and Kernel on semiparametric
regression. This method is used to resolve the problem of regression modeling, when the
relationship between the response variable and the predictor variables most follow a certain
pattern, partly have a repetitive pattern, and some others not follow a specific pattern.
Moreover, this method depends on oscillation, smoothing parameter and bandwidth. The
purpose of this research are to obtained the estimator of semiparametric regression model with
combined estimator of Fourier series and Kernel using Penalized Least Square method (PLS).
The result show that the PLS estimation produces the estimator of parametrik linier regression,
the estimator of Fourier series, the estimator of Kernel, and also the combined estimator of

Fourier series and Kernel in semiparametric regression model.

1. Introduction

Semiparametric regression is a statistical methods used to estimate the relationship pattern of the
predictor variable and response variable, when a case in regression analysis contains two components;
parametric component and nonparametric component. Based on several previous research that has
been conducted by researchers, mostly they use the same estimator approach for all or some of the
predictor variables. Meanwhile, in many cases, the data pattern of each predictor variables are not
always identical. Therefore, to solve these problems, we need a more proper estimator that can be used
to approximate the data pattern. In semiparametric regression, there are many functions that can be
used to approximate the data pattern, especially Fouries series and Kernel.

According to [1], estimation of Fourier series is capable of handling data that is smooth character
and follow the pattern repeated at certain interval, previous research have been investigate by
researchers as Amato [2], Asrini [3], Bilodeau [1], Pane [4], and Sudiarsa [5]. The kernel is one of the
frequenlty used estimators in semiparametric and nonparametric regression. This estimator has more
flexible shape, simple mathematics calculation, and achieves convergence more rapidly. Several
researches on Kernel estimator have been conducted by some researchers such as Nadaraya [6],
Budiantara et al [7], and Speackman [8].

Therefore, this research focus on semiparametric regression model with combined estimator
between Fourier series and Kernel obtained through PLS method.
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2. Semiparametric Regression Model

Given the data (Xli,XZi,K Xputu Z:,2,, K, ruyu) with predictor (le’tl’zml) and response

variables Y; it can be approximated by a semiparametric regression model as follows :

=ifj(xji)+g(ti)+2hm(zmi)+£i,i=1,2,...,n (1)
1= m=1

The f i (x ji) curve is assummed referring to linear pattern. Meanwhile regression curve ¢ (ti) and
hm (Zmi) are assummed unknown and smooth that can be approached by Fourier series function and

Kernel function, then ¢; is random error that follows normally and independently distributed with

mean zero and variance o . The linear parametric components, Fourier series component and kernel
component are defined as follows :

Linear function with p predictor variable can be written as :

fj(Xn’quK Xoi )=ﬁ0+ﬁlxi1+ﬂ2xi2+l‘ + B Xip 2)
where :
Bo. By By L, B, are parameters of the linier function

Fourier series function with one predictor variable can be written as :

K

1
g(t) =bz, + an + Zak coskz, (3)

=1
where :
b, ao,aka =1,2,...,K are parameters of the Fourier series function

and then Kernel function with » predictor variable can be written as :

h (z;,2,.K ,2,) = n‘lzwm(z)y (4)

L e

e z-z7\’
n —K ( : )
o o
Kernel estimator depends on the Kernel function K and bandwidth parameter « . There are several
types of Kernel functions included a Gaussian Kernel of the form, as follows :

XZ

K(X)=%ez,—00<x<oo

where :

Hence, a semiparametric regression model i in equatlon (1) can be written as follows :
9/0=X/3’+Ga+Dy+€ ()
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where :
1 oXy X LooX,] [ s |
1 X1 Xy L X2p r /31
X =1 X3 Xy L X3p /5 = ﬁz
M 0 M
71 an Xn2 L an ] 7/))13 ]
t, % cost, L cosKt,
1
G- t, > cost, L cosKt,
M M O M
t, % cost, L cosKt,
r U
a= [b a8, a; L a ]
nw (z) nw (z) L n'w (z) Y,
nW (z) nwW (z) L nW (z)fr [V,
D= (11(2) 2(2) a(z)’y= .
M M 0 M M
W, () nw (z) Loew ()] .

3. Multivariable Semiparametric Regression with Combined Estimator between Fourier Series
and Kernel

The combination estimator of Fourier

series and Kernel in semiparametric regression,
[L(Xli i KO X008, 2,25, K 0, 2, ) is obtained by employing PLS optimization, as follows :
2
. : d 4 - "2 2
= ANy - N (x) = q(t) - _ Z(g" (6)
Min{R(f,g.h) + 23 (9)} l}/vlglvrg{n z(y ;f,(x“) a(t) mZlhm(zm.) +/1{”(g (t)) dt}
Several lemmas are needed to complete this PLS optimization.
Lemma 1l
If the function of Fourier series is g(t) as in equation (3), then the penalty is
J(g)=}3(g<z> (t))2 dt=2k4ak2, )
0 T =

this lemma has been proven by [3] and [8].

Lemma 2
If fj(xji) is approach by multiple linier function as in equation (2), g(t) is approach by Fourier

series function as in equation (3) and h_(z,;) is approach by Kernel as in equation (4), then the

goodness of fit R(f, g,h) is obtained as follows :
r r
R(f,g.h) =n*(y-Xp-Ga-Dy) (Y- Xp-Ga-Dy)
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Proof
In general, goodness of fit R(f, g, h) is defined as follows :

R(f,g,h) = n_li(Yi ‘i fj(xji)_g(t)_zhm(zmi))

It could be shown

1
Yi = By = BiXy — BoXi, —L _ﬂpxip_btli _an_ 8, Coskt,

s 1 Z1-1
R(f,g,h) =n K i
(f.gm=n"> L na(a)Y

-L —btsi—EaO—;akcosktsi—Z 1 (z—zi)‘

Hence, goodness of fit R(f, g, h) can be written as follows :

r r
R(f,g.h) =n*(y-X5-Ga-Dy) (Y- Xp-Ga-Dy) ®)
Optimization using PLS can be solved by combining goodness of fit R(f, g,h) and penalty J(Q)

as follows :

Min{R(fg.0)+ 13(g)} {n (- xp’r-Gé-D§)T(§-xpr’-G§-D§)}
- Min{Q(5.8)}

/f
Lr L 1
The estimation of /9/ and & are obtaining by using partial derivative of Q(f,a) to B and a.

First, consider Q(/;’,g) the function as follows :
Q(/gr’,arl)=n-1(\?-xp’r-G£-D§)T(§-X/§’-G£-D§)+A£Tu5
n-l[(l-D)§-X/§-G£]T [(l-D)§-X/§-G5]+/15TU£
=n-1[{/T(|—D)T _BTXT —§TGT][( _ )§—X/§’—G§]+A§TU§
~wy" (1-DJ (1-D)§-n§" (1-D) X p-n"§' (1 -DJ
i BTXT (I - )y+n-1/3 XTXB+n B X Ga-n"a"G" (1-D)y
nt TGTX/J’+n‘1aTG Ga+Aa Ua
“‘WT( D' (1-D)y-2n" A X" (1-D) - 2n-1rTGT(|_D)§}
nigTXT X/)’+n‘1/3’ X"Ga+n"a'G"Ga+Ad'UA
The derlvatlon of Q(ﬁ a) to 5 and & as follows :

an/;a) 20X (1 - D)+ 20X X+ 20X G

r
aQ(/” D) _ gt (I -D)y+2n"'G"X 8+ 2n"'G"Ga + AUA
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r r
Equalizing the first derivatif of sum square error with zero, for £ and a are obtained :

M (xTX) XT(1-D) Y- (XX )" XTG4

& (XTX) X7 (1 -D)§-(xTx)'1xTG[(GTGmAU)'lGT(| —D))r/—(GTG+n/1U)_1GTX,§]

r
. r
Substitution @ to £ ,s0:

r
p=A ©)

where :

A=PM,

1

P - [u ~(X'X)"X"G(G"G +nAU )'1(3Tx]_1

-1

M, = [(xTx)‘le(l -D)-(X"X) X"G(6"G+naU) G (I —D)]

Then substitution /3/‘ into g ,S0 ¢
a =By (10)
where :
B=PM,
_ _ -1
P =[| —(GTG+n/1U)1GTX(XTX)1XTG]

-1

M, = [(GTG +nAU) G (1-D)-(G"G+naU ) G X (X"X) X" (I - D)]
So the estimator of linear parametric curve is :

f(x) = Xp (11)

C = xPM,
the estimator of Fourier series curve is :
3(t) = Ga

= Ky,
where :

K =DPM,

then, the estimator of Kernel curve is :

I r
h(z) = Dy (13)

(12)
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The estimator of semiparametric with combined Fourier series and Kernel, obtained :

A% X K X0t 24, 25K, 2) = F(x) + 80 +h(2) (14)
= AVa Ko DY
=(A+K+D)¥o
— NYb

N=A+K+D

where :

4. Conclusion
The results shows that the estimator of combination between Fourier series and Kernel function in
semiparametric regression was obtined through the PLS optimization, as follows :

Mln{ (f.9,h)+AJ()} = Mln n‘lg(yI 21‘ (x;) +gt)+2h . ) +/1f (g"))’

The estimator of combination between Fourier series and Kernel function 1 1s

A% % K Xt 25, 25, K0, 2) = f(X)+9(t)+h(Z)
where

r ~ - -
f(X) = By + B Xy + BoXip +L +/3’pxip
K

§) = bz, +%ék0 + Zék coskz,.
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