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Abstract. Missing values in repeated measurements have attracted concerns from 
researchers in the last few years. For many years, the standard statistical methods for 
repeated measurements have been developed assuming that the data was complete. The 
standard statistical methods cannot produce good estimates if the data suffered 
substantially by missing values. To overcome this problem the imputation methods could 
be used. This paper discusses three imputation methods namely the Yates method, 
expectation-maximization (EM) algorithm, and Markov Chain Monte Carlo (MCMC) 
method. These methods were used to estimate the missing values of per-capita expenditure 
data at sub-districts level in Central Java. The performance of these imputation methods is 
evaluated by comparing the mean square error (MSE) and mean absolute error (MAE) of 
the resulting estimates using linear mixed models. It is showed that MSE and MAE 
produced by the Yates method are lower than the MSE and MAE resulted from both the 
EM algorithm and the MCMC method. Therefore, the Yates method is recommended to 
impute the missing values of per capita expenditure at sub-district level. 

1. Introduction 
Incomplete data problems as a result of missing values in repeated measurements have attracted 
concerns from researchers in the last few years. For many years, standard statistical methods for 
repeated measurements have been developed assuming the data was complete. In fact, if the data 
suffered substantially by missing values then the standard statistical methods cannot produce good 
estimates. To overcome this problem, proper statistical analysis methods are required. 

This problem can be overcome by the complete case analysis with assuming the missing values are 
missing completely at random (MCAR). However, this approach can substantially reduce the sample 
size and consequently the estimates become inefficient. Furthermore, Schafer and Graham [1], Nakai 
and Weiming [2], and Buuren [3] have shown that the complete case analysis under the assumption of 
missing at random (MAR) produces poor estimates. 

In practice, the missing values are usually missing at random (MAR). In this situation the available 
case analysis can be used. However, as mentioned by Donders et al. [4], the available case analysis 
produces biased estimates unless the missing values are imputed before analysis is carried out. 
Through the imputation technique, the missing values are replaced by the most likely numbers as 
if they were observed. 
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This paper discusses three imputation methods namely the Yates method, expectation-
maximization (EM) algorithm, and Markov Chain Monte Carlo (MCMC) method. These three 
methods were used to estimate the missing values of per capita expenditure data at sub-districts 
level in Central Java. The performance of these imputation methods are evaluated by comparing 
the mean square error (MSE) and mean absolute error (MAE) of the resulting estimates using 
linear mixed models. 

2. Methods 

2.1. The Data 
The national social economy survey (SUSENAS) has been designed by Statistics Indonesia (BPS) 
to produce social-economic indicators in Indonesia. In 2011 until 2014, SUSENAS was conducted 
quarterly with rolling samples. As a result of these rolling samples the aggregated data at sub-
districts level became incomplete. For a particular quarter, some sub-districts had the observed 
data but in other sub-districts the data might not be available. In other words, at sub-districts level 
we had missing data problems especially missing data for repeated measurements. 

In this paper, the per capita expenditure data at sub-district level from 2011 until 2014 were 
imputed. This paper provided a preliminary study of the data imputation applied to five districts in 
Central Java province, namely: Banyumas, Pati, Semarang, Brebes and kota Semarang. The 
imputation of the data was conducted separately for each district. 

2.2. The Yates Method 
This method is a classical approach developed by Yates in 1933 to estimate missing values in 
experimental design for the purpose of minimizing error variance. This approach consists of 3 stages, 
namely: estimation of missing values, replacement of the missing values with prediction values, and 
analysis of the complete data [5]. 

Since the problem structures were similar to the missing problem in a randomized complete block 
design then the formula for this design was used. 
a). The formula for a single missing value is  
 𝑦!" =

!  !!.!!  !.!!!..
(!!!)(!!!)

 (1) 

Where 𝑦!"   is the prediction of missing value at the-ith sub-district and the-jth time, 𝑦!.  is the total 
observed values at the-ith sub-district containing a missing value, 𝑦.!   is is the total observed values at 
the-jth time containing missing values, 𝑦..  is the total observed values for all observations, 𝑚  is the 
number of subjects, and 𝑛  is the number of times. 
b). If number of missing values are more than one, we iterate formula (1) using a starting value  

 𝑦!"!#!$%(!") =
!!.!!.!
!

 (2) 

In this formula, 𝑦!.  is the mean values of the-ith subject,  𝑦.!   is the mean values of the-jth time. 

2.3. The EM Algorithm 
This algorithm is a parametric method to impute missing values based on the maximum likelihood 
estimation. This algorithm is very popular in statistical literatures and has been discussed intensively 
by many researchers, such as : Dempster et al. [6], Little and Rubin [5,7], Schafer [8], and Watanabe 
and Yamaguchi [9]. 

This algorithm uses an iterative procedure to finding the maximum likelihood estimators of 
parameter vector through two step described in Dempster et al. [6], Schafer [8], and Little and Rubin 
[7] as follows: 
a). The Expectation step (E-step) 
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The E step is the stage of determining the conditional expected value of the full data of log likelihood 
function 𝑙 𝜃|𝑌  given observed data. Suppose for any incomplete data, the distribution of the complete 
data Y can be factored as 

             𝑓 𝑌|𝜃   = 𝑓 𝑌!"#,𝑌!"#|𝜃  
      = 𝑓   𝑌!"#|𝜃   𝑓 𝑌!"#|𝑌!"#, 𝜃   (3) 

where 𝑓   𝑌!"#|𝜃  is the distribution of the data observed 𝑌!"# and 𝑓 𝑌!"#|𝑌!"#, 𝜃  is the distribution of 
missing data given data observed. Based on the equation (3), we obtained log likelihood function 
 𝑙 𝜃|𝑌 = 𝑙 𝜃|𝑌!"# + 𝑙𝑜𝑔  𝑓 𝑌!"#|𝑌!"#, 𝜃  (4) 
where 𝑙 𝜃|𝑌  is log likelihood function of complete data, 𝑙 𝜃|𝑌!"#  is log likelihood function of 
observed data, and 𝑓 𝑌!"#|𝑌!"#, 𝜃  is the predictive distribution of missing data given 𝜃.  

Objectively, to estimate  𝜃 is done by maximizing the log likelihood function (4). Because 𝑌!"# not 
known, the right side of equation (4) can not be calculated. As a solution, 𝑙 𝜃|𝑌  is calculated based 
on the average value 𝑙𝑜𝑔  𝑓 𝑌!"#|𝑌!"#, 𝜃  using predictive distribution   𝑓 𝑌!"#|𝑌!"#, 𝜃(!) , where 𝜃(!) 
is temporary estimation of unknown parameters. In this context, an initial estimation 𝜃(!) be calculated 
using the complete case analysis. With this approach, the mean value of equation (4) can be expressed 

𝑄 𝜃|𝜃(!)   = 𝑙 𝜃|𝑌!"# + 𝑙𝑜𝑔  𝑓 𝑌!"#|𝑌!"#, 𝜃 𝑓 𝑌!"#|𝑌!"#, 𝜃(!) 𝜕𝑌!"# 

 = 𝑙 𝜃|𝑌!"# + 𝑙𝑜𝑔  𝑓 𝑌!"#|𝑌!"#, 𝜃 𝑓 𝑌!"#|𝑌!"#, 𝜃(!) 𝜕𝑌!"# 
 = 𝑙 𝜃|𝑌 𝑓 𝑌!"#|𝑌!"#  , 𝜃(!) 𝜕𝑌!"# (5) 

The equation (5) basically a conditional expected value of log likelihood function for complete data 
𝑙 𝜃|𝑌  given observed data and initial estimate of unknown parameter.  
b). The maximization step (M-step) 
The M step is to obtained the iteratively estimation 𝜃(!!!) with maximizes 𝑄 𝜃|𝜃(!)  as follow  

 𝑄 𝜃(!!!)|𝜃(!) ≥   𝑄 𝜃|𝜃(!)  (6) 
Both E and M steps are iterated until convergent. 

2.4. The MCMC Method 
This method generates pseudo random draws from probability distributions via Markov chains. A 
Markov chain is a sequence of random variables in which the distribution of each element depends on 
the value of the previous one. MCMC is a multiple imputation methods be used to imputate the 
missing values of continuous data set. In application, MCMC assumes that data have a multivariate 
normal distribution, missing data is MCAR or MAR, and patten of missing data is monotone or 
arbitrary. Moreover, the inference of MCMC will be robust if the number of missing values are not too 
large [8]. 

MCMC consists of the two most popular methods namely Gibbs Sampling and Metropolis-
Hastings algorithm. In Gibbs sampling, one draws from the conditional distribution of each 
component of a multivariate random variable given the other components. In Metropolis-Hastings, one 
draws from a probability distribution intended to approximate the distribution actually of interest, and 
then accepts or rejects the drawn value with a specified probability. In this paper, we use a Gibbs 
sampling algorithm to draw the missing values from the posterior predictive distribution. 

In Bayesian inference perspective, information about unknown parameters is expressed in the form 
of a posterior probability distribution. It is a useful  alternative approach to ML with to add a prior 
distribution for the parameters and compute the posterior distribution of the parameters of interest. 
Suppose that 𝒀𝒎𝒊𝒔 and 𝒀𝒐𝒃𝒔 are the missing and observed values, respectively. The observed data 
posterior can be express as 
 𝑝(𝜃|𝑌!"#)   ∝     𝑝 𝜃   𝑝(𝑌!"#|𝜃) (7) 
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where 𝑝 𝜃  is the prior distribution and 𝑝 𝑌!"# 𝜃   is the observed likelihood function. The problem of 
incomplete data is the observed data posterior 𝑝(𝜃|𝑌!"#) is intractable and cannot easily be 
summarized or simulated. To overcome this problem, 𝑌!"# is augmented by an assumed value of the 
𝑌!"#. The resulting complete-data posterior 𝑝(𝜃|𝑌!"#,𝑌!"#) becomes much easier to handle. The 
observed data posterior is related to the complete-data posterior distribution that would have been 
obtained if we had observed the missing data 𝑌!"#, namely 
 𝑝(𝜃|𝑌!"#,𝑌!"#)   ∝     𝑝 𝜃   𝑝(𝑌!"#,𝑌!"#|𝜃) (8) 
From equation (7) and (8) can be obtained 

𝑝(𝜃|𝑌!"#) = 𝑝(𝜃,𝑌!"#|𝑌!"#) 𝑑𝑌!"# 
 = 𝑝(𝜃|𝑌!"#,𝑌!"#)  𝑝(𝑌!"#|𝑌!"#) 𝑑𝑌!"# (9) 

In equation (9), the posterior predictive distribution   𝑝(𝑌!"#|𝑌!"#) cannot be simulated directly. 
However, it is possible by create random draws of 𝑌!"# from   𝑝(𝑌!"#|𝑌!"#) using techniques of 
MCMC. In this regard, we use a Gibbs sampling algorithm to draw the missing values 𝑌!"# from 
  𝑝(𝑌!"#|𝑌!"#). By assuming that data have a multivariate normal distribution, data augmentation is 
applied to Bayesian inference with missing data by repeating the following steps 

a). The imputation I-step 
Given a current guess 𝜽(𝒕) of the parameter, create random draws of the missing values 𝒀𝒎𝒊𝒔 from the 
posterior predictive distribution   𝒑(𝒀𝒎𝒊𝒔|𝒀𝒐𝒃𝒔) 

 𝑌!(!"#)
(!!!)   ~      𝑝(𝑌! !"# |𝑌!"#, 𝜃(!)) (10) 

b). The posterior P-step 

Then, with conditional to 𝒀𝒊(𝒎𝒊𝒔)
(𝒕!𝟏) , draw a new value of θ from the complete data posterior  

 𝜃(!!!)  ~      𝑝(𝜃|𝑌!"#,𝑌!(!"#)
(!!!) ) (11) 

Given starting from a initial values 𝜽(𝟎) and 𝒀𝒎𝒊𝒔
(𝟎) , these two step define a Gibbs sampler. 

Repeating the Gibbs sampling algorithm with large enough number of iterations, it creates stochastic 
sequences 𝜽(𝒕)  and 𝒀𝒎𝒊𝒔

(𝒕)  whose stationary distribution are 𝒑(𝜽|𝒀𝒐𝒃𝒔) and   𝒑(𝒀𝒎𝒊𝒔|𝒀𝒐𝒃𝒔), 
respectively. In regard to MCMC, we use the initial value of the EM algorithm for the posterior mode, 
and the resulting EM estimates are used to begin the MCMC method. Moreover, we also specify the 
prior parameter information using one of a noninformative or ridge prior. A noninformative prior  is 
used when no strong prior information is available about 𝜽, it is customary to apply Bayes’s theorem 
with the improper prior which is the limiting form of the normal inverted-Wishart. Meanwhile, a ridge 
prior is used when the sample covariance matrix is singular or nearly so, either because the data are 
sparse or because such strong relationships exist among the variables that certain linear combinations 
of the columns of 𝒀exhibit little or no variability [8]. 

2.5. Evaluation of Missing Values Imputation Results 
In this paper, we evaluated the performance of these imputation methods by comparing the mean 
square error (MSE) of the resulting estimates 𝝁 = 𝐗𝜷 + 𝐙𝒖 using linear mixed models (LMM) for 
each district. For each district and time, we also evaluated the performance by comparing the mean 
absolute error (MAE) of the resulting estimates 𝒚𝒊𝒋. 

Let 𝒚𝒊𝒋 denotes the response of repeated mesurement at the tth time on the ith sub-district, 
𝒊 = 𝟏,𝟐,… ,𝒎 and 𝒕 = 𝟏,𝟐,… ,𝒏, the LMM for response vector of 𝒚𝒊 is 

4

ISS                                                                                                                                                        IOP Publishing
IOP Conf. Series: Earth and Environmental Science 58 (2017) 012017           doi:10.1088/1755-1315/58/1/012017



 

                

1

2

i

i

in

y
y

y

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎣ ⎦

M
 =   

1 1 0 0
1 0 1 0

1 0 0 1

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎣ ⎦

L
L

M M M O M
L

1

n

µ

τ

τ

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎣ ⎦

M
 +  

1
1

1

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎣ ⎦

M iα   +   

1

2

i

i

in

e
e

e

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎣ ⎦

M
                          (12) 

In matrix notation, equation (12) can be expressed as 
   𝒚𝒊   = 𝐗!𝜷 + 𝟏𝒏𝛼! + 𝒆𝒊,   𝑖 = 1,2,… ,𝑚 (13) 
Where 𝐗! = 𝟏𝒏    𝐈!  is the matrix of time factor fixed effect at the ith sub-districts, 𝜷 = 𝜇  𝜏!… 𝜏!    is 
the parameter vector of fixed effect, 𝛼! is the random effect of sub-districts, 𝟏𝒏 is an unity vector order 
n, and 𝒆𝒊 = 𝑒!!   … 𝑒!"    is the vector of error model at i sub-districts. Assuming 𝛼! and 𝑒!" are 
independenly distributed with mean 0 and varian 𝜎! and 𝜎. The variance-covariance matrix of 𝒚𝒊, is 
given by 𝐕𝒊 = 𝐕𝒊(𝜹) = 𝜎!𝐉! + 𝜎𝐈! where 𝜹 = 𝛿!, 𝛿! ! = 𝜎, 𝜎! !, 𝐉! is a unity square matrix order 
n and 𝐈! is an identity matrix order n.   
Another form of equation (13) is 
 𝐲 = 𝐗𝜷 + 𝐙𝒖 + 𝒆 (14) 
where 𝐲 = 𝒚!! ,… ,𝒚!! !, 𝒖 = 𝛼!,… ,𝛼! !, 𝐗 = 𝟏𝒏⊗ 𝟏𝒏    𝐈! , 𝐙 = 𝐈! ⊗ 𝟏𝒏, and 𝒆 = 𝒆!! ,… , 𝒆!! !.  
Assuming 𝒖 and 𝒆 are independenly distributed with mean 0 and covariance G and 𝐑. The variance-
covariance matrix of 𝐲 is 𝐕 = 𝐕 𝜹 = 𝐙𝐆𝐙! + 𝐑. 

Refering to Rao and Molina [10], we have found the empirical best linear unbiased prediction 
(EBLUP) of 𝝁 = 𝐗𝜷 + 𝐙𝒖 is  

   𝝁 = 𝐗𝜷 + 𝐙𝒖 (15) 
where 

 𝜷 = 𝜷 𝜹!" = 𝐗!𝐕!𝟏𝐗 !𝟏𝐗!𝐕!𝟏𝐲 (16) 

is the best unbiased estimator (BLUE) of 𝜷, 

   𝒖 = 𝒖 𝜹!" = 𝐆𝐙!𝐕!𝟏 𝐲 − 𝐗𝜷  (17) 

is the best unbiased prediction (BLUP) of 𝜶𝒊, and 𝜹𝑹𝑬 the restricted maximum likelihood (REML) 
estimator of 𝜹 is obatained iteratively using the Fisher-scoring algorithm, with updateing equation 

   𝜹!"𝜹!"
(!!!) = 𝜹!"

(!) + 𝑰 𝜹!"
(!) !!

𝒔 𝜹!"
(!)  (18) 

Note that 𝒔 𝜹𝑹𝑬
(𝒂)

 is the partial derivative of log-likelihood function  

 𝑙 𝜹 = 𝑐 − !
!
log 𝐕 − !

!
log 𝐗!𝐕!𝟏𝐗 − !

!
𝐲!𝐏𝐲 (19) 

with respect to 𝜹, 𝑰 𝜹𝑹𝑬
(𝒂)  is the matrix of expected second-order derivatives of −𝒍 𝜹  with respect to 

𝜹. In equation (19), 𝐏 = 𝐕!𝟏 − 𝐕!𝟏𝐗 𝐗!𝐕!𝟏𝐗 !𝟏𝐗!𝐕!𝟏, c denotes a generic constant, and 
𝐏𝐲 = 𝐕!𝟏 𝐲 − 𝐗𝜷 . 

The MSE of   𝝁 is given by 
                                         MSE(𝝁) = 𝐸 𝝁 − 𝝁 ! 

                          ≈ 𝑔! 𝛿 +   𝑔! 𝛿 +   𝑔! 𝛿   (20) 
where 
 𝑔! 𝛿 = 𝒁! 𝐆 − 𝐆𝐙!V!!𝐙𝐆 𝐙 (21) 

is MSE of 𝐗𝜷+ 𝐁 𝐲− 𝐗𝜷  with 𝐁 = 𝐙𝐆𝐙!𝐕!𝟏, 
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 𝑔! 𝛿 = 𝐃 X!V!!X !!𝐃! (22) 

is variance of 𝐃 𝜷− 𝜷  with 𝐃 = (𝐈− 𝐁)𝐗, and 

 𝑔! 𝛿 = tr 𝜕B/𝜕𝛿   𝐕 𝜕B/𝜕𝛿 !  𝐕 𝛿  (23) 

with 𝐕 𝜹   is the asymptotic covariance matrix of  𝜹. 

Then for each district, the MAE of 𝒚𝒊𝒋 in the jth time is formulated  

 MAE  (𝑦!") =
!
!

𝑦!" − 𝑦!"!
!  (24) 

3. Results and Discussion 
In this section, we showed the results of each imputation method to estimate the missing values of 
per capita expenditure data at sub-district level of five districts in Central Java province based on 
Susenas data from 2011 until 2014. After the data being completed then we estimated the mean of 
per capita expenditures for each district using the three methods. We also calculated the 
corresponding MSE. Moreover, for each district the mean of per capita expenditures by time as 
well as the mean absolute error of the resulting estimates of per capita expenditures were 
calculated. 

Table 1 shows the results of each imputation method applied to the first ten sub-district of 
Banyumas district. The three methods produced different estimates of the missing values. Based on 
fifteen quarterly missing cells, the mean imputation results of the Yates method tend to be small, 
whereas the results of the MCMC method tend to be large. Nevertheless, we will evaluate these results 
by comparing the MSE after using these three methods.  

Table 2 shows the estimates of means as well as the corresponding MSE for each districts based on 
the three different methods of imputation. The results showed that MSE produced by the Yates method 
was lower than the MSE resulted from both the EM and the MCMC methods.  

In Figure 1 the estimates of imputed means of per capita expenditures for each quarter using the 
three methods of five districts were presented. Generally for these five districts, the mean imputation 
resulted from the Yates method tended to be small, whereas the MCMC method tended to be large. 

Figure 2 showed the estimates of MAE for each quarter in five districts, based on the three different 
methods of imputation. The results showed that MAE produced by the Yates method was lower than 
the MAE resulted from both EM and MCMC methods. It is apparent that to impute the missing values 
of per capita expenditure data at sub-district level we should use the Yates method. 

 
Table 1. Mean Imputation Results for the First Ten Sub-
districts in Banyumas District Using the Yates, EM Algorithm, 
and MCMC Methods 

Sub-districts Yates EM Algorithm MCMC 
1.  Lumbir 379.04 293.31 296.68 
2.  Wangon 633.46 547.53 547.48 
3.  Jatilawang 555.85 804.55 804.67 
4.  Rawalo 338.18 621.57 571.42 
5.  Kebasen 473.88 395.49 425.25 
6.  Kemranjen 455.10 549.33 637.50 
7.  Sumpiuh 397.25 467.16 541.47 
8.  Tambak 422.88 624.95 581.48 
9.  Somagede 403.23 261.31 368.17 
10. Kalibagor 443.20 575.97 655.74 
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Figure 1. Comparison of Imputed Means among Yates, EM, and MCMC methods for five districts: 

(a) Banyumas, (b) Pati, (c) Semarang, (d) Brebes, and (e) Kota Semarang 
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Figure 2. Comparison of Mean Absolute Error among Yates, EM, and MCMC methods for each 

district: (a) Banyumas, (b) Pati, (c) Semarang, (d) Brebes, and (e) Kota Semarang 
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Table 2. Comparison of Mean and MSE results Missing Values Imputation between 
Yates method, EM Algorithm, and MCMC per district 

Districts 
Yates EM Algorithm MCMC 

Mean MSE Mean MSE Mean MSE 
1. Banyumas 490.03 3.5 x 104 527.71 5.6 x 104 531.80 6.6 x 104 
2.  Pati 460.96 2.7 x 104 520.30 3.4 x 104 533.48 3.8 x 104 
3.  Semarang 635.33 4.9 x 104 632.76 5.7 x 104 769.88 9.7 x 104 
4.  Brebes 456.01 1.8 x 104 460.80 2.1 x 104 450.62 2.2 x 104 
5.  Kota Semarang 885.61 15.5 x 104 959.71 18.0 x 104 915.84 18.2 x 104 

      Note : MSE were calculated based on residual sum of squares divided by their degree of freedom. 
 

4. Conclusion   
The results of this study revealed that the MSE produced by the Yates method was lower than the 
MSE resulted from both the EM algorithm and the MCMC method. These results were consistent with 
MAE of the Yates method which was also lower than the MAE resulted from the other two methods. 
Hence, based on those results, we concluded that to impute the missing values of per capita 
expenditure data at sub-district level we should use the Yates method. 
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