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Abstract. Many linear and nonlinear mixed response models are proposed to predict the 

optimum dose of fertilizer.  However, a major restriction of this class of models is the 

normality assumption of the random parameter component. The purpose of this paper is to 

analyze the performance of linear and nonlinear mixed models of fertilizer dosing with 

independent normally distributed random parameter components.  We compare the Linear 

Plateau, Spillman-Mitscherlich, and Quadratic random parameter models with different random 

effects distribution assumption, i.e. the normal, Student-t, slash, and contaminated normal 

distributions and the random errors following their symmetric normal independent 

distributions. The method is applied to datasets of multi-location trials of potassium 

fertilization of soybeans. The results show that the Student-t Spillman-Mitscherlich Response 

Model is the best model for soybean yield prediction. 

1.  Introduction  

Many linear and nonlinear response models are commonly used to predict the optimum dose of 

fertilizer.  One modeling approach is to fit a general quadratic form to the data by means of least 

squares under the assumption of a fixed effects model with independent normally distributed random 

error term with constant variances ([1]-[2]). However, this approach is unrealistic because it neglects 

the variability that probably exists between sites and/or years. 

An alternative model is the mixed effects approach ([3]-[6]). This approach allows the parameters 

to have a random effect component that represent between sites or years variability.  The random 

parameter models have been found to outperform the fixed parameter models to model dose-response 

relationships ([5], [7]-[8]). Furthermore, the quadratic functional form commonly used  is not always 

the best model. [7] and [9] showed that the stochastic linear plateau model and the Mitscherlich 

exponential type functions outperform the quadratic form. In a similar vein, [8] showed that the 

stochastic linear plateau function is more adequate than the stochastic quadratic plateau function for 

corn response to Nitrogen fertilizer. 

The random parameter components and the errors are usually taken as normally distributed random 

variables ([5]-[8]). However, the normality and symmetry assumptions may be too restrictive because 
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in practice departures from normality is common. Particularly, [10] and [11] concluded that the field 

crop yield distributions are in general non-normal or non-lognormal. The degree of skewness and 

kurtosis vary by crop and by the amount of nutrients uptake.   

Rosa et al. [12] advocated the use of the Normal independent distribution for robust modeling of 

linear mixed models.  Furthermore, [13] considered the Normal independent distribution for modeling 

of nonlinear mixed models.  The Normal independent distribution is a class of symmetric, heavy-tailed 

distributions that includes the normal distribution, Student-t, slash, and contaminated distributions. 

The class of Normal independent distributions accomodate observations with heavy tails as well as the 

normal distribution. 

Traditionally, fertilizer-dose response models are estimated by means of maximum likelihood 

estimation (ML) ([5]-[8]). However, for nonlinear models and small sample sizes ML is frequently 

biased ([14]). In addition, convergence can be a problem even with careful scaling and good starting 

values. Bayesian estimation is an alternative to ML. The advantages of Bayesian estimation are that 

the results are valid in small samples and that convergence in the case of nonlinear models is not an 

issue ([14]-[15]). 

The purpose of this paper is Bayesian estimation of random parameter dose (fertilization)-response 

(yield) models for yield data that is Normally independently distributed. 

2.  Mixed effects model and normal independent distributions  

2.1.  The normal mixed effects model  

In general, a Normal mixed effects model reads: 

 

    (     )                      (1) 

 

with 

(     )        
    (      (    

    ))  

where the subscript   is the subject index,                (          )
    is a         vector of 

   observed continuous responses for subject      (     )  * (      )    (       )+ 
  with  ( ) 

the nonlinear or linear function of random parameters     and covariate vector        and    are 

known design matrices of dimensions       and      , respectively,   is the      vector of fixed 

effects,    is the      vector of random effects, and    is the        vector of random errors, and     

denotes the identity matrix. The matrices    ( ) with unknown parameter α is the      

unstructured dispersion matrix of       
  the unknown variance of the error term. When  ( ) is a 

nonlinear parameter function, we have the Normal NonLinear Mixed Model (N-NLMM); if  ( ) is a 

linear parameter function, we have the N-Linear Mixed Model (N-LMM).  

It follows that   

 

       
    (   ) and          

    (    
    ) 

 

and they are uncorrelated, since    (     )    ([13],[16]). 

2.2.  Normal independent (NI) distributions 

A Normal independent distribution is defined as the p-dimensional random vector          ⁄    
where   is a location vector,   is a multivariate normal random vector with location vector  , scale 

matrix    and    is a positive random variable with cumulative distribution function (cdf)  (   ) and 

probability density function (pdf)  (   ),   is a scalar or vector of parameters indexing the 

distribution of the scale factor   ([12]-[13],[16]). Given  ,   follows a multivariate normal 
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distribution with location vector  , and scale matrix        Thus, the NI distributions are scale 

mixtures of the normal distributions denoted by      (     )   The marginal pdf of   is  

 

 ( )  ∫   (     
   )  (   ) 

 

 

 

 

The class of normal independent distribution is a group of symmetric heavy-tailed distribution of 

robust alternative to the routinely used of normal distribution for mixed effects model. 

2.3.  The NI-mixed effects model  

Using the general framework (1), the following general NI-Mixed Model (NI-MM) is defined as: 

 

   
     (      ( )  ) and    

      (    
      )               (2) 

 

where the random effects are assumed to have a multivariate NI distributions and also the random 

errors.  

3.  Bayesian inference  

3.1.  Prior distributions and joint posterior density  

Below, we apply a Bayesian framework based on the Markov Chain Monte Carlo (MCMC) algorithm  

to infer posterior parameter estimates.  Following (1) and (2), the NI mixed model can be formulated 

in hierarchical for            as:   

 

            
       ( (           )   

    
    )  

 

         
      (    

   )  

 

    
     (    )  

 

([13],[16]). 

Let   (  
      

 ) ,   (  
      

 ) ,   (       )
 . Then, the complete likelihood 

function associated with (        ) , is given by  

 

 (       )  ∏ ,   (    (           )   
    

    )  (       
   ) 

    (    )]. 

 

To complete Bayesian specification, we need to consider prior distributions for all the unknown 

parameters   (     
       ) . We consider     (     )    

    (       )      (   ) 

([13],[16]). For   we take      (  ⁄ ) (   )  for the Student-t (t) model, Gamma (   ) for the slash 

(SL) model.  Furthermore,   (   ) for    and  Beta (     ) for     for the contaminated normal (CN) 

model. 

Assuming independency of the parameter vector, the joint prior distribution of all unknown 

parameters is  

 

 ( )   ( ) (  
 ) ( ) ( ) 

 

Combining the likelihood function and the prior distribution, the joint posterior density of all 

unknown parameters is   
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3.2.  Model comparison criteria  

The expected Akaike information criterion (EAIC) and the expected Bayesian information criterion 

(EBIC) are a deviance-based measure appropriate for Bayesian model selection ([17]-[18]).  

Let   and   (       )
    be the entire model parameters and data, respectively. Define 

  ( )       (   )    ∑    (    )
 
   , where  (    ) is marginal distribution of   , then 

  ,  ( )- is a measure of fit and can be approximated by using the MCMC output in a Monte Carlo 

simulation. This index is given by  ̅  
 

 
∑  ( ( )) 
   .  Where  ( ) is the     iteration of MCMC 

chain of the model and   is the number of iterations. 

The expected Akaike information criterion (EAIC) and the expected Bayesian information criterion 

(EBIC) define as follows  

 

    ̂   ̅    , and      ̂   ̅       ( ) 
 

where  ̅ is the posterior mean of the deviance,   is the number of parameters in the model,    is the 

total number of observations. These criteria penalizing models with more complexity.  Smaller value 

of EAIC and EBIC indicate a better fit ([19]).  

4.  Case study  

4.1.  Data 

The dataset is obtained from 19 multi-location trials of potassium fertilization of soybeans. The 

experiments were carried out between 2002 and 2014. The soil types are Ultisols, Inceptisols, 

Vertisols, and Oxisols with soil potassium contents varying from very low to very high. Common 

soybean varieties were used.  Each experiments consisted of five levels of potassium fertilization. The 

doses applied were 0, 40, 80, 160 and 320 kg ha
-1

 of KCl. The plots were 6 by 5 m, or 4 by 5 m  

arranged in a randomized complete block design with three to nine replications.  The response variable 

was soybean yield (t ha
-1

).  The yields reported are averages over replications ([20]-[22]).  

4.2.  Response functions  

We consider three response functions: the Linear Plateau (LP), the Spillman-Mitscherlich (SM) and 

the Quadratic functions (Q).  

The stochastic LP is defined as follows:  

 

      (   (      )           )                (3) 

   

where for location         is the soybean yield;     the potassium fertilizer dose;    the intercept 

parameter;    the linear response coefficient;    the plateau yield;     ,      and      are the random 

effects; and    is the random error term.  In term of (1),   (        )
       (           )

 ; 

   
     (     ) and    

      (    
      ).  

The stochastic SM reads:  

 

      (      )     ((       )   )           (4) 

 

where    is the maximum yield attainable by potassium fertilization;     is the yield increase;    is the 

ratio of consecutive increments of the yield; all other parameters, variables and distributions as in (3). 
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The stochastic Q is defined as: 

 

      (      )    (      )  
             (5) 

 

where     is the intercept parameter whose position (value) can be shifted up or down by the random 

effect    ;    is the linear response coefficient with random effect parameter    ;     is the quadratic 

response coefficient whose position can be shifted up or down by the random effect    ;   
(         )

   all other variables and distributions as in (3) ([7]-[9]).  

4.3.  Statistical analysis  

The datasets was used to identify the model with the best fit among the random parameter models of 

fertilizer dosing. Several statistical models with differing distribution in the random effects and 

random errors are compared.  These models are : 

Model 1: Normal distribution for the random effects and for the random errors (N-N) 

Model 2: Student-t distribution for the random effects and for the random errors (t-t) 

Model 3: Slash distribution for the random effects and for the random errors (SL-SL) 

Model 4: Contaminated normal distribution for the random effects and for the random errors (CN-CN). 

The following independent priors were considered to perform the Gibbs sampler,      (    
 ), 

      (       )       (       )  and        (   ) (  ) for the t-t model, 

         (        ) for the slash model,          (   ) and           (   )  for the 

contaminated normal model, respectively.  

For each of the models, we ran three parallel independent chains of the Gibbs sampler with size 50 

000 iterations for each parameter with thinning of 5 and an initial burn in of  25 000.  We monitored 

chain convergence using trace plots, autocorrelation plots and the Brooks-Gelman-Rubin scale 

reduction factor ( ̂) ([23]). To avoid non-convergence, we normalized the original doses (subtracted 

the mean and divided by the standard deviation) which gave: -1.06, -0.70, -0.35, 0.35, and 1.76, 

respectively ([24]).  We fitted the models using the R2jags package available in R ([25]). 

5.  Results and discussion  

5.1.  Soybean yield data  

Figure 1 shows the histogram and normal Q-Q plot of soybean yield data for 19 locations, while the 

boxplot is presented in figure 2.  The figures indicates non-normality (heavy-tailed) pattern.  The Q-Q 

plot does not show a straight line, while the boxplot shows asymmetry and an outlier. Thus, it seems 

appropriate to fit a heavy-tailed model to the data. 

 

 
(a) 

 
(b) 

 

Figure 1. Soybean yield data: (a) Histogram; (b) Normal Q-Q plot. 
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Figure 2. Boxplot of soybean yield data. 

5.2.  Linear plateau response models  

Based on the EAIC and the EBIC in table 1, we find that among the NI models the Student-t (t-t) 

Model gives the best fit, followed by the contaminated normal (CN-CN), slash (SL-SL), and normal 

(N-N) Model. We furthermore find that the heavy-tailed distributions outperform the normal 

distributions. Thus, the t-t Model is the best Linear Plateau Response Model. 
 

Table 1.  The Linear plateau models 
 

Parameter N-N  t-t SL-SL CN-CN 

Mean SD Mean SD Mean SD Mean SD 

α1  

α2  

µp  

σ
2
ε  

d1  

d2 

d3 

ν (ν1) 

ν2 

1.473 

39.968 

1.878 

0.139 

0.467 

13.135 

0.306 

0.114 

20.482 

0.129 

0.014 

0.095 

11.964 

0.081 

1.555 

29.274 

1.853 

0.014 

0.374 

2.534 

0.241 

5.043 

0.109 

19.480 

0.111 

0.004 

0.098 

4.694 

0.074 

3.039 

1.482 

30.780 

1.854 

0.012 

0.355 

3.684 

0.227 

2.697 

0.110 

19.899 

0.122 

0.004 

0.085 

6.048 

0.068 

1.620 

1.521 

29.061 

1.867 

0.012 

0.340 

2.452 

0.227 

0.515 

0.450 

0.125 

19.030 

0.119 

0.006 

0.113 

3.937 

0.077 

0.253 

0.226 

EAIC 

EBIC 

-93.56 

-93.71 

 -104.91 

-105.09 

 -95.86 

-96.04 

 -97.21 

-97.41 

 

 

Table 1 furthermore shows that for the t-t Model, all the fixed effects, i.e.,  the intercept parameter 

(  ), the linear response coefficient (  ), the plateau yield    and the random effects (        )  are 

significant. 

5.3.  Spillman-Mitscherlich response models  

Based on the EAIC and EBIC in table 2 we find the following rankings of the NI models: t-t < N-N < 

SL-SL < CN-CN.  Therefore, the t-t Model is the best Spillman-Mitscherlich Response Model. 
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Table 2.  The Spillman-Mitscherlich models 
 

Parameter N-N  t-t SL-SL CN-CN 

Mean SD Mean SD Mean SD Mean SD 

β1  

β2  

β3  

σ
2
ε  

d1  

d2 

d3 

ν (ν1) 

ν2 

1.950 

0.032 

2.495 

0.104 

0.465 

0.008 

0.623 

0.111 

0.013 

0.415 

0.010 

0.087 

0.006 

0.199 

1.919 

0.054 

1.848 

0.009 

0.371 

0.053 

0.441 

4.754 

0.092 

0.021 

0.312 

0.003 

0.087 

0.012 

0.240 

2.731 

1.945 

0.069 

1.765 

0.009 

0.355 

0.051 

0.463 

3.139 

0.103 

0.024 

0.300 

0.003 

0.080 

0.012 

0.198 

1.735 

1.955 

0.067 

1.808 

0.010 

0.401 

0.052 

0.490 

0.321 

0.544 

0.106 

0.023 

0.305 

0.003 

0.086 

0.012 

0.222 

0.235 

0.203 

EAIC 

EBIC 

-147.72 

-147.88 

 -153.88 

-154.06 

 -138.45 

-138.63 

 -135.19 

-135.39 

 

 

For the t-t Model, the fixed effects, i.e., the maximum yield coefficient (  ), the increase in yield 

(  ), the ratio of successive increment (  ) and the random effects (        ) are significant. 

5.4.  The Quadratic response models  

Comparison of the EAIC and EBIC in table 3 leads to the following rankings:  t-t < SL-SL < CN-CN < 

N-N. The results furthermore show that the heavy-tailed distributions outperform the normal 

distribution, and that overall the t-t Model is the best Quadratic Response Model. 
 

Table 3.  The Quadratic models 
 

Parameter N-N  t-t SL-SL CN-CN 

Mean SD Mean SD Mean SD Mean SD 

γ1  

γ2  

γ3  

σ
2
ε  

d1  

d2 

d3 

ν (ν1) 

ν2 

1.796 

0.510 

-0.386 

0.033 

0.445 

0.046 

0.030 

0.107 

0.072 

0.072 

0.006 

0.085 

0.030 

0.022 

1.825 

0.330 

-0.246 

0.014 

0.327 

0.082 

0.072 

2.516 

0.079 

0.056 

0.052 

0.005 

0.085 

0.023 

0.019 

1.329 

1.783 

0.398 

-0.297 

0.011 

0.297 

0.075 

0.066 

1.617 

0.096 

0.072 

0.067 

0.005 

0.074 

0.020 

0.017 

0.868 

1.788 

0.391 

-0.292 

0.014 

0.315 

0.077 

0.068 

0.366 

0.265 

0.096 

0.076 

0.069 

0.006 

0.092 

0.021 

0.018 

0.160 

0.141 

EAIC 

EBIC 

-45.32 

-45.47 
-104.44 

-104.62 

 -83.22 

-83.40 

 -80.59 

-80.79 

 

 

For the t-t Model, all the fixed effects, i.e., the intercept parameter (  ), the linear response 

coefficient (  ), the quadratic response coefficient (  ), and the variance component (        ) are 

significant. 

5.5.  Comparing the Linear plateau, Spillman-Mitscherlich and Quadratic models  

Comparing the Linear Plateau (LP), Spillman-Mitscherlich (SM) and Quadratic (Q) models under four 

distributional assumptions, we find that the t-t Spillman-Mitscherlich model has the smallest EAIC and 

EBIC values among the competing models indicating that this is the best fit model for the soybean 

yield data (table 4).  
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Table 4.  Comparison of LP, SM and Q models 
 

Distribution LP SM Q 

EAIC EBIC EAIC EBIC EAIC EBIC 

N -93.56 -93.71 -147.72 -147.88 -45.32 -45.47 

t -104.91 -105.09 -153.88 -154.06 -104.44 -104.62 

SL -95.86 -96.04 -138.45 -138.63 -83.22 -83.40 

CN -97.21 -97.41 -135.19 -135.39 -80.59 -80.79 

6.  Conclusion  

We investigated the performance of linear and nonlinear mixed response models with normal 

independent (NI) distributions of random effects. We applied the Bayesian estimation framework to 

datasets of multi-location trials of potassium fertilization of soybeans. We compared the Linear 

Plateau, Spillman-Mitscherlich, and Quadratic random parameter models with different distributions 

of the random parameter component, i.e. the normal, Student-t, slash, and contaminated normal 

distributions and the random errors following their symmetric normal independent distributions.   

The overall results showed that for all three models of fertilizer dosing, the Student-t distributions 

outperform the normal distributions.  The best model for soybean yield prediction is the Student-t 

Spillman-Mitscherlich Response Model. 
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