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Abstract. The correlation between adjacent bands of hyperspectral image data is relatively 

strong. However, signal coexists with noise and the HySime (hyperspectral signal 

identification by minimum error) algorithm which is based on the principle of least squares is 

designed to calculate the estimated noise value and the estimated signal correlation matrix 

value. The algorithm is effective with accurate noise value but ineffective with estimated noise 

value obtained from spectral dimension reduction and de-correlation process. This paper 

proposes an improved HySime algorithm based on noise whitening process. It carries out the 

noise whitening, instead of removing noise pixel by pixel, process on the original data first, 

obtains the noise covariance matrix estimated value accurately, and uses the HySime algorithm 

to calculate the signal correlation matrix value in order to improve the precision of results. 

With simulated as well as real data experiments in this paper, results show that: firstly, the 

improved HySime algorithm are more accurate and stable than the original HySime algorithm; 

secondly, the improved HySime algorithm results have better consistency under the different 

conditions compared with the classic noise subspace projection algorithm (NSP); finally, the 

improved HySime algorithm improves the adaptability of non-white image noise with noise 

whitening process. 

1. Introduction 

Adjacent bands of hyperspectral data acquired with less than 20nm spectral resolution generally have a 

strong correlation, and their DN value and visual images are often very similar. The hyperspectral 

image is recorded in the form of a matrix. Each column of the matrix represents the corresponding 

band spectral response data value. Through a series of matrix calculation, the front rows of the matrix 

band data can represent most information of the original image, and the back rows of the matrix 
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represents the image noise. Low-dimensional data can be used to represent high-dimensional data with 

this method, reducing the amount of data processing workload and suppressing the impact of the noise. 

The quality of dimension reduction results will directly affect the next end-member extraction 

algorithms’ final results. In the data dimension reduction process, how to select the appropriate 

dimension methods and how to accurately determine the required low-dimensional data are the most 

important two procedures. 

After years of research, there are some relatively mature and widely used methods in hyperspectral 

data de-correlation transformation. De-correlation transformation is the removal of inter-band 

correlation of hyperspectral data transformation that converted data bands in different dimensions of 

space. The principal component analysis (PCA) algorithm and the minimum noise fraction (MNF) 

algorithm are the most two frequently used de-correlation transformation algorithms. The PCA 

algorithm is a linear algorithm based on K-L transformation. It sets the original image matrix variables 

into a set of uncorrelated random variables, arranges them in order of the covariance value to form a 

new image matrix. Typically, the first principal component matrix contains 80% variance information 

of all the bands. However, the PCA algorithm is sensitive to image noise. Principal components with 

large amount of information of all bands do not necessarily mean they have high signal to noise ratio 

(SNR). When an image noise variance of the principal component is greater than the variance of the 

signal, the image quality formed with the principal components is poorer. Therefore, Andrew A. Green 

et al (Andrew A. Green, 1988) proposed the MNF transformation. What is different with the PCA 

transformation is that the vectors are arranged by their SNR and the impact of noise on image quality 

is eliminated. Later on, James B. Lee, etc. proposed the noise-adjusted principal component 

transformation algorithm (NAPC).  

However, the data dimension determination is still in the research stage. And for the PCA and MNF 

transformation algorithms, a key issue is to determine how many dimensions should be chosen for the 

low-dimensional data to represent high-dimensional data. In practical applications, researchers often 

select dimensions on their own experiences which make the dimensions determination process tend to 

be subjective or even blind. The correctness of dimension determination will directly affect the 

accuracy of the subsequent data processing precision and data analysis results. Therefore, choosing the 

appropriate rules and methods to determine the optimal number of dimensions plays a significant 

important role for the subsequent data processing and analysis procedures. Based on the above 

considerations, this paper analyzes and reviews the commonly used noise-whitening algorithms as 

well as the subspace dimension determination algorithm, proposes a hyperspectral data subspace 

dimension determination algorithm based on noise whitening processing, uses the algorithm to 

calculate the dimension of both the simulated and real hyperspectral data, and finally confirms its 

stability and accuracy by comparing with different algorithms. 

2. Hyperspectral image Noise estimation and whitening 

Under the influence of various factors, it is inevitable to bring in image noise while acquiring 

hyperspectral images. Currently, there are three main methods for remote sensing image noise 

estimation: laboratory method, dark current method and image method. It is hard for both the 

laboratory and the dark current method to apply in practical application because prior knowledge of 

the image is needed and the calculation requires a complex series of accurate measurement. The image 
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method uses remote sensing images to directly analyze and estimate image noise, so this method is 

widely used to estimate the hyperspectral image noise (Zhang B, 2011). For hyperspectral images, the 

image noise estimation method mainly utilizes three features: the type and nature of hyperspectral 

images, pixel spatial correlation and hyperspectral band correlation. 

2.1. Hyperspectral Image Noise Estimation 

Since hyperspectral image between adjacent bands have a strong correlation, there are two commonly 

used algorithms to estimate hyperspectral image noise. One is the de-correlation algorithm with whole 

spectral dimensions proposed by Roger (Roger, 1996), and the other one is the spectral and spatial 

de-correlation method (SSDC) proposed by Arnold (Arnold, 1996). The advantage of SSDS algorithm 

is that it makes use of hyperspectral image spatial and spectral correlation between adjacent bands. 

And it is little affected by ground covering vegetation types, has a high degree of automotive 

calculation and does not need any human intervention. So, the SSDC algorithm is one of the stable 

algorithms to estimate hyperspectral image noise.  

2.2. Hyperspectral Image Noise Whitening 

Noise whitening is a process which first does the data de-correlation processing, and then does the 

noise covariance unitization processing. Researches confirm that, for a random vector, the 

transformation matrix which can do the whitening process is not unique. Meanwhile, when adopting 

different whitening matrix, the whitening results are also different. Generally, when doing the 

hyperspectral image processing, this paper assumes that the hyperspectal image information and the 

noise is irrelevant. This means the covariance matrix of the noise is a diagonal matrix.  

3. The HySime algorithm 

Based on the Principle of Least Squares, José M. Bioucas-Dias （José M. Bioucas-Dias, 2008) 

proposes the hyperspectral signal identification by minimum error algorithm (HySime). The HySime 

algorithm is used to estimate the dimension of hyperspectral subspace data. It estimates the signal as 

well as the noise correlation matrix first, and then best represents the feature vector subset of signal 

subspace in the form of minimum mean square error. 

Suppose the observation value y consists of the signal x as well as the noise n, shown in the form of 

vector formula that y=x+n. The signal correlation matrix estimation value is referred as xR̂ . Suppose 

the mean value of noise is 0, and xR̂  is the covariance. Then the signal correlation matrix can be 

separated as: 

 T
x EER ˆ  (1) 
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The space of L formed from  LeeE ,,1   can be separated into two subspace kE  and


kE  

which are mutually orthogonal. And the corresponding feature vectors  
kiik eeE ,,
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 ,
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Lk ii

k

eeE ,,
1



  and  Liii ,,, 21   are used to record the sequence of feature matrix. 

Suppose the projection matrix of subspace kE  is referred as 
T

kkk EEU  , and the projection of 

y on kE  is referred as yUx kk ˆ .Try to find the best feature vector sequence  Liii ,,, 21   

and k to make  kmse  minimized. The calculation formula is as follows: 
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In the formula above, c is a constant, and 
jip 、

2

ji
  refers to the binomial observation signal and 

noise correlation matrix respectively. 

 
jjj iy

T
ii eRep   

jjj in
T
ii eRe ˆ2   

(4) 

To minimize the right of the equal sign of formula 3, it is necessary to find all the negative value of 

i , and the corresponding  ,k  is the calculation result . 

4. The Improved HySime Algorithm 

In HySime algorithm, it is easy to known from formula 3 and 4 that the estimation of image noise as 

well as signal matrix are two important procedures. And the calculation of corresponding feature 

vectors affects the final results directly. Meanwhile, the noise spectrum estimation algorithm adopts 

the full image spectral de-correlation method to estimate the dimensions, calculating pixel by pixel. 

Then it uses the original observation data minus the noise estimation value to get near true signal value, 

and the signal related estimation matrix can be calculated this way. 

The original HySime algorithm is applicable when image noise is accurately estimated. However, 

besides the huge calculation, it is very difficult to accurately estimate a whole image’s noise value. So 

it is not applicable to estimate the image noise and it cannot be an ideal algorithm to estimate the 

image noise in order to have a good precision with the original HySime algorithm. 
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Suppose the observation image is white noise. The noise covariance matrix can be referred as nR̂

I2 , and the feature value  and its corresponding feature vector x of the signal related matrix 

fits into the formula 5: 

        02  xIRxIRRxIR ynyx 


 (5) 

It can be known after solving formula 5 with the HySime algorithm that when the noise is white 

noise, no matter big or small, the calculated feature vectors keep the same. This means the subspace 

determined by the feature vectors is not affected by image noise. And when the observation image 

noise is white noise, the impact of the image noise can be eliminated following two steps: first do the 

whitening transformation to the image noise, and then estimate its image noise with HySime algorithm. 

This method can improve the adaptability of the algorithm to image noise. 

For a certain original observation data y, suppose nR̂  is the calculated noise covariance matrix. 

Separate nR̂  with its feature value to get its feature value and feature vectors, referred as n  and 

A . Use matrix 
2/1 nAF  to do the image noise whitening process and mark the calculated 

observation data as wy . Put wy  as the original HySime algorithm input value. Then the noise is 

white noise and its covariance matrix is a unit matrix, that is IRnw 
ˆ . Mark the observation related 

matrix as ywR  and the signal related matrix equals to the observation data subtracting the noise value, 

that is IRRRR ywnwywxw  ˆˆ . Then do the calculation with HySime algorithm. Mark the feature 

vector of xwR̂  as  LeeE ,,1  , and mark the sequence of  Liii ,,, 21  . Then it is easy to 

know that 1ˆ2 
jjj inw

T

ii eRe . So formula 3 can be put as formula 6. The corresponding  ,k  

value of all the negative value of  
ji

p2  is the subspace dimensions needed to be calculated. 
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5. Experiments and analysis 

5.1. Simulated Data Experiment 

The simulated data used in this paper is made by manually adding noise into the real hyperspectral 

data. Signal data can be calculated by the number of end-member spectra multiplied by their 

corresponding abundance. And end-member spectra are selected from USGS spectral libraries. 
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Resample the spectra for 224 bands following the AVIRIS response functions and center wavelengths. 

The abundance data is distributed randomly with the Dirichlet method. The experiment is carried out 

this way: Set the number of different end-members to 5, 10, 15 and 20 respectively. The abundance of 

end-members follows the Dirichlet distribution which forms the signal data. Add a certain amount of 

noise to these four signal data to make their signal to noise ratio to be 15dB, 25dB and 35dB. Added 

noise can be separated into two types which are the white noise and colored noise. Abundance 

threshold value is set to 1. Each of the above combination can produce 100 sets of simulated data. Use 

the original Hysime algorithm, the improved Hysime algorithm and the NSP algorithm to do the 

calculation test respectively. Signal with manually added noise is relatively simple, so noise spectrum 

estimation adopts the full image spectral de-correlation method to estimate the dimensions, calculating 

pixel by pixel. The NSP algorithms with false alarm probability value of 10e-3 and 10e-4 are referred 

as NSP_10e-3 and NSP_10e-4. Signal subspace estimation is carried out for each 100 simulated data 

sets, and the mean and standard deviation of calculation results are used to be the evaluation 

indicators.  

Conclusions can be drawn from the results of comparison of different algorithms with different 

parameters: 

1) When the noise is white noise, under different parameters, results from the improved HySime 

algorithm as well as the original HySime algorithm have some consistency. However, when the 

noise is colored noise, the accuracy and stability of improved algorithm on the end-member 

estimation is much better than the original HySime algorithm. 

2) Under different parameters, end-member estimation results from the improved Hysime algorithm 

and the NSP algorithm are basically the same.  

3) When white noise exists, once the SNR increases, signal subspace estimation accuracy of each 

algorithm rises. Because the higher the SNR is, the better signal to noise suppression capability it 

is, and the smaller impact noise on the algorithm it is. This also illustrates the importance of noise 

estimation and removal. 

5.2. Real Data Experiment 

The AVIRIS data was collected from the Cuprite mining district, Nevada, in June, 1997. The DN 

value represents the reflectance ratio. It contains 224 bands between 400 nm to 2500 nm, its 

radiometric resolution is 10 nm and its spatial resolution is 20 m. To start with, remove water vapor 

absorption or low SNR bands so as to 192 bands are usable. The Cuprite mining district has a detailed 

ground survey result and geological background information. Gregg Swayze et al. have used the 

AVIRIS data which acquired in 1990 to identify 18 kinds of mineral types. They have carried out an 

X-ray diffraction analysis with field samples to determine their mineral categories and verified the 

results of the analysis (Swayze, 1992). Thereafter, Gregg Swayze et al. used the AVIRIS data acquired 

in 1995, analyzed the distribution of 25 kinds of minerals and did the mineral mapping with 23 kinds 

of minerals (Swayze, 1997).  

From previous studies it can be concluded that the dimension estimation value of Cuprite mining 

zone basically lies between 18 and 30 (Ciobanu C, 1999). This paper uses the same four algorithms 

with simulated data, including: HySime algorithm, improved HySime algorithm, false alarm 

probability value with NSP algorithm 10e-3 and 10e-4's. The results are as follows:  
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Table. 1. Hyperspectral dimension estimation in Cuprite mining area 

Dimension 

Estimation 

Noise  

Estimation 

HySime 

algorithm 

Improved 

HySime 

algorithm 

NSP_10e-3 NSP_10e-4 

With Spectral de-correlation 

algorithm 
20 27 27 27 

With SSDC algorithm - 26 26 26 

The dimension number estimation value is 26 and 27 in the table which has a good consistency with 

the estimation value of 18-30 by other researchers (Ciobanu C, 1999）. The MNF transformation is 

adopted to check the correctness of dimension estimation in Cuprite mining district hyperspectral 

images. Choose different band combinations to calculate the pure pixel index (PPI), set the projected 

number of iterations to 20,000, set the threshold value of the coefficient to 2 and count the pixel 

number when the PPI index is greater than 1 in results. The results are shown in Table 2:  

Table. 2. PPI calculation results with different parameters 

Bands Number 10 20 26 30 40 50 

PPI 639 874 1003 1060 1176 1355 

The greater PPI is, the greater possibility pure pixels exist and the greater possibility the spectral 

space can be separated. Data in table 2 shows that when the number of bands is 26 or 30, the number 

of pixels is close to each other. The main image information is mostly concentrated in the top 40 bands 

after the MNF transformation. With the increase of the number of bands, the noise it contains is also 

rising. In this case, select the first 26 or 30 bands to calculate the PPI, the results are close to each 

other. This shows that the top 26 and top 30 bands can represent the original hyperspectral images 

good enough and have a good consistency. On the contrary, when the band number is 10 or 20, they 

cannot represent the original hyperspectral image completely. To further verify the above analysis, 

select the intersection of the above six cases and then 475 pixels were obtained. Mark these 475 pixels 

as pure pixels and label the pixel set as . These pixels are little influenced by image noise and 

represent the pixels which are most likely to be end-members. Analyze each pixel’s independence, not 

including the 475 pixels of pixel set   for the above six cases. The greater the spectral angle is, the 

more independent each pixel is to pixel set  , and the more possibility they belong to pure pixels. 

For the above six cases, the minimum angle of all spectral angle maximum value is 2.756°and its 

band number is 10. Meanwhile, the maximum angle of all spectral angle maximum value is 4.118°

and its band number is 50. And the spectral angles are basically the same of 4.114°which is 

significantly different with other spectral angles of different band numbers, when band number is 26 

and 30. This suggests that the information subspace obtained by dimension estimation can represent 

spectral information very well. And data analysis is effective with the help of dimension estimation 

number. 

6. Conclusions 

1) The improved HySime dimension estimation algorithm does not need to be performed pixel by 

pixel to estimate the hyperspectral image noise. It improves the efficiency as a result of reducing 

the amount of computation. What’s more, it improves the accuracy thanks to eliminating errors 

cause by the noise estimation inaccuracy. 
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2) The improved HySime algorithm does not depend on the assumption that the mean value of 

hyperspectral image noise is zero. This makes the original algorithm to be more applicable. For 

both white and colored noise data, it can estimate the dimension number which is close to the true 

value. 

3) Noise estimation plays an important role in real hyperspectral data processing and analysis. No 

matter the noise is white or colored, to accurately estimate or eliminate the noise will significantly 

improve the accuracy of image interpretation. 
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