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Abstract. South Sulawesi province as one of the rice production center for national food 
security are highly influenced by climate phenomenon that lead to drought condition. This 
paper quantifies meteorological drought based on Standardized Precipitation Index (SPI) 
recommended by the World Meteorological Organization (WMO) and Consecutive Dry Days 
(CDD) as one of the extreme indices recommended by the Expert Team on Climate Change 
Detection and Indices (ETCCDI). The indices were calculated by using (i) quality controlled 
daily and monthly observational precipitation data from 23 weather stations of various record 
lengths within 1967-2015 periods, and (ii) 0.05o x 0.05o blended gauge-satellite of daily and 
monthly precipitation estimates of the Climate Hazards Group InfraRed Precipitation with 
Stations (CHIRPS) dataset. Meteorological drought intensity represented by Average Duration 
of Drought Intensity (ADI) from three-monthly SPI (SPI3) show spatial differences 
characteristic between eastern and western region. Observed and CHIRPS have relatively 
similar perspective on meteorological drought intensity over South Sulawesi. Relatively high 
values of ADI and longest CDD observed mainly over south western part of study area.  

1.  Introduction 
Government and policies makers are pay attention about drought, especially when it’s occurs during 
long time period and impact on sensitive sector, such as agriculture that act as thread for food security 
issue. National food security takes higher priority especially when drought occurred in food 
production center areas. Drought over Indonesia is commonly associated with warm phase of El Niño 
Southern Oscillation (ENSO), known as El Niño[1–4].  

South Sulawesi as one of the primary national rice production centers also can be affected by El 
Niño indicated by wider drought coverage area [4,5]. The potential impact of drought due to the weak 
and moderate El Niño occurrences in Indonesia is such that yields are reduced by about 40 % in 
average. The most drought- prone areas are located in South Sulawesi for August–October [5]. 

Climate Hazards Group Infrared Precipitation with Station data (CHIRPS) is a new land-only 
gridded database of precipitation. It blend three different types of information: global climatologies, 
satellite estimates and in situ observations. This dataset incorporates monthly precipitation climatology 
CHP Clim (Climate Hazards Group Precipitation Climatology), quasi-global geostationary thermal 
infrared satellite observations, Tropical Rainfall Measuring Mission's (TRMM) 3B42 product, 
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atmospheric model rainfall fields from NOAA CFS (Climate Forecast System), and precipitation 
observations from various sources, including national or regional Meteorological Services [6]. 
CHIRPS can be promising to be used as alternative meteorological drought monitoring tools because 
its showing good performance during evaluation with rainfall observation data [7]   

CHIRPS dataset already used to monitor meteorological drought all over the world [8–10] and also 
applied for seasonal drought forecast in Africa [11]. Nevertheless, evaluation when CHIRPS used as 
drought monitoring tools in South Sulawesi region are still required. The objectives of this study was 
to carry out the perspective agreement on meteorological drought intensity monitoring between 
CHIRPS and observation.  

2.  Data and Methodology 

2.1.  Data  
This paper quantifies meteorological drought based on Standardized Precipitation Index (SPI) 
recommended by the World Meteorological Organization (WMO) [12] and Consecutive Dry Days 
(CDD) as one of the extreme indices recommended by the Expert Team on Climate Change Detection 
and Indices (ETCCDI) [13]. The SPI and CDD were calculated by using (i) quality controlled daily 
and monthly observational precipitation data from 23 weather stations of various record lengths within 
1971-2015 periods, and (ii) 0.05o x 0.05o blended gauge-satellite of daily and monthly precipitation 
estimates of the Climate Hazards Group Infra Red Precipitation with Stations (CHIRPS) dataset. This 
gridded dataset were obtained from Climate Hazards Group/ The Department of Geography, 
University of California Santa Barbara  (ftp://ftp.chg.ucsb.edu/pub/org/chg/products/CHIRPS-2.0/) for 
the 35-year period from 1981 – 2015. 

Table 1. List of observational station used in this paper from various altitude and type such as rain 
gauge (Obs Gauge), Agricultural Meteorological station (AgriMet), and BMKG weather station 
(BMKG). Various precipitation record lengths within 1967-2015 periods and well spatially distributed 
over South Sulawesi. 

Station Name District Altitude 
(m.a.s.l) 

Station 
Type Data Range Period 

(years) 
Quality 

(%) 
ANABANUA Wajo 15 Obs Gauge 1977 - 2015 39 94.87 
BATUBASSI Maros 13 Obs Gauge 1976 - 2015 40 97.92 

BATUKAROPA Bulukumba 81 AgriMet 1967 - 2015 49 99.83 
BIRINGROMANG Makassar 8 BMKG 1972 - 2015 44 96.21 

BPPBENGO Bone 77 Obs Gauge 1971 - 2015 45 99.63 
BPPDOPING Wajo 4 Obs Gauge 1976 - 2015 40 89.38 

BPPKGALESONG Takalar 15 Obs Gauge 1980 - 2015 36 97.69 
BPPMALAKAJI Gowa 750 Obs Gauge 1976 - 2015 40 96.25 

BUKITHARAPAN Pare-pare 80 Obs Gauge 1976 - 2015 40 97.92 
ENREKANG Enrekang 65 Obs Gauge 1976 - 2015 40 90.00 

MACOPE Bone 9 Obs Gauge 1970 - 2015 46 99.82 
MENGE Wajo 38 Obs Gauge 1977 - 2015 39 94.02 

PGCAMMING Bone 132 AgriMet 1983 - 2015 33 95.71 
PGTAKALAR Takalar 15 AgriMet 1983 - 2015 33 90.91 

SIWA Wajo 25 Obs Gauge 1977 - 2015 39 90.38 
STAKLIMMAROS Maros 13 BMKG 1985 - 2015 31 90.86 

STAMARPAOTERE Makassar 2 BMKG 1986 - 2015 30 99.44 
STAMETHASANUDDIN Maros 14 BMKG 1972 - 2015 44 96.78 

STAMETMASAMBA Luwu utara 50 BMKG 1983 - 2015 33 95.71 
STAMETPONGTIKU Tana toraja 829 BMKG 1998 - 2015 18 98.15 
STASIUNGEOFISIKA Gowa 28 Obs Gauge 1978 - 2015 38 92.11 

SUMPANGBINANGAE Barru 7 Obs Gauge 1977 - 2015 39 98.93 
TODOKKONG Pinrang 18 Obs Gauge 1985 - 2015 31 98.66 
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Figure 1. Yearly total precipitation average from monthly CHIRPS dataset (left) and elevation 
characteristic (right) over study area (meter above sea level/ m. a. s. l) with regional boxes chosen for 
Western Coast (WC), Southern Coast (SC), Eastern Coast (EC), Northern Coast (NC) and All Region 
(AR). 

2.2.  Methodology 
Daily precipitation from observation used to calculate maximum number of consecutive days with 
daily precipitation amount  < 1 mm (CDD) [13]. CDD values were also calculated from CHIRPS daily 
precipitation, for each grid in the study area with a 0.05 x 0.05o horizontal resolution.  

SPI was developed in Colorado by McKee et al [14], is based on the probability distribution of 
precipitation. SPI can be used as valuable estimator of drought severity which requires less input data 
and efforts then another meteorological drought indices [15]. Furthermore, SPI was reported to be able 
to identify emerging droughts sooner than Palmer Index [16]. The basis of SPI approach is the 
calculating probabilities of precipitation for each time scale [14]. SPI values at 3-month time scales 
(SPI3) were calculated from observation and the CHIRPS monthly precipitation, for each grid in the 
study area. SPI3 were selected because its represents the typical time scale for precipitation deficits to 
affect usable water sources and soil moisture important for agriculture [14]. Based on paddy growth 
period, SPI3 would be able to capture the presence and severity of drought during its growth period 
[5]. Furthermore, agricultural drought (with soil moisture content as proxy) could be best replicated by 
SPI on a scale of 2–3months [17], SPI3 also suggested for seasonal drought studies because the 3 
months droughts are having a drastic impact on the agriculture [18].  

A drought event onset defined when SPI value are less than -1.0 and terminates when SPI value 
becomes positive again [14,19]. The positive sum of the SPI for all the months within a drought event 
is referred as drought magnitude (DM) [14,20]. The average drought intensity (ADI) was calculated 
based on drought magnitude (DM) divided by number or duration of consecutive months during 
drought event [14,21,22], using observation and CHIRPS. 

Level of agreement between the observed and CHIRPS based meteorological drought assessment 
for each referred station grid value was conducted using temporal Pearson correlation coefficient (R) 
[23]. Spatial agreement in CDD and SPI pattern between observations and the CHIRPS is analyzed 
using pattern correlations. This analysis were widely used previously on several references [23–26]. 

3.  Result and Discussion 

3.1.  Consecutive Dry Days 

Maximum consecutive dry days and correlation coefficient for 35 years period (1981 – 2015) can be 
seen in Figure 2. South western region experience relatively longer dry spell period compared to 
eastern and northern region. Observational based CDD value also agreed with gridded data when 
explain spatial distribution of maximum CDD. Temporal agreement between CDD CHIRPS and 
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observation were showed by temporal correlation coefficient values 0.3< R  0.8 in Figure 2 (right). 
Furthermore, there are spatial agreement between CHIRPS and observational based maximum 
consecutive dry days during analysis period could be explained by pattern correlation value (R = 
0.631).      

  
Figure 2. Maximum Consecutive Dry Days (CDD) comparison for each year based on CHIRPS data 
(left), rain gauge observation (middle) and correlation coefficient between CDD CHIRPS versus 
observation  (right) during 35 years period (1981 – 2015). Longest consecutive number of days with 
total precipitation amount less than 1 mm/day period and correlation coefficient explained by color 
bar. 

Average consecutive dry days for all time period can be seen in Figure 3. These results are relatively 
similar with maximum CDD. High pattern correlation value (R = 0.813) between CHIRPS and 
observation average CDD also show spatial agreement of these two dataset. South western region 
experience relatively longer dry spell period compared to eastern and northern region. Observational 
based CDD value also agreed with gridded data when explain spatial distribution of average CDD. 

  
Figure 3. Same as Figure 1 except for Average Consecutive Dry Days (CDD) 
comparison for each year based on CHIRPS data (left) and rain gauge 
observation (right). 

3.2.  Standardized Precipitation Index (SPI) 
Average duration of drought intensity (ADI) based on SPI3 for 35 years period (1981 – 2015) can be 
seen in Figure 4 (left and middle). Temporal agreement between CDD CHIRPS and observation were 
showed by temporal correlation coefficient values 0.4< R  0.8 in Figure 4 (right). Different ADI value 
between gridded data and observation mainly occurs in south western region. Nevertheless, spatial 
distribution of ADI based on CHIRPS generally similar with observational based. 
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Figure 4. Average drought intensity (ADI) of 3-monthly Standardized Precipitation Index (SPI3) 
based on CHIRPS data (left), rain gauge observation (middle) and correlation coefficient between 
SPI3 CHIRPS versus SPI3 observation  (right) during 35 years period (1981 – 2015).  

Maximum Drought Duration (DD) for all time period can be seen in Figure 5. Different DD value 
between gridded data and observation generally occurs in all of region. Gridded data slightly over 
estimate the DD value compare to observation. Nevertheless, spatial distribution of ADI based on 
CHIRPS generally similar with observational based. 

  
Figure 5. Maximum Drought Duration (DD) of 3-monthly Standardized Precipitation Index 
(SPI3) based on CHIRPS data (left) and rain gauge observation (right) during 35 years period 
(1981 – 2015). Longest consecutive number of month with SPI3 values less than -1.0 period 
explained by color bar. 

 
Figure 6. Time series of 3-monthly Standardized Precipitation Index (SPI3) area averaged over 
five different region i. e. West Coast (WC_SPI3) South Coast (SC_SPI3), East Coast 
(EC_SPI3), North Coast (NC_SPI3), and All South Sulawesi region (AllRegion_SPI3). More 
detailed descriptions about region boundary explained in text. 
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Time series of 3-monthly Standardized Precipitation Index (SPI3) area averaged over five different 
region i. e. West Coast (WC_SPI3), South Coast (SC_SPI3), East Coast (EC_SPI3), North Coast 
(NC_SPI3), and All South Sulawesi region (AllRegion_SPI3) can be seen in Figure 6. Strong El Niño 
mpact on SPI3 are clearly shown, especially during 1982/1983 and 1997/1998 (Figure 7).  West coast 
region are highly effected by El Niño compared to another region. 

 
Figure 7. Same as Figure 6, except for two selected strong ENSO event : 1982/1983 (solid 
lines) and 1997/1998 (dashed lines). Horizontal axis describe ENSO years month ( Jan-00 to 
Dec-00) and following ENSO years (Jan-01 to Dec-01)  

4.  Conclusion  
Observed and blended gauge-satellite precipitation estimates (CHIRPS) have relatively similar 
perspective on meteorological drought intensity over South Sulawesi. Temporal agreement between 
CHIRPS and observation meteorological drought were showed by CDD (SPI3) temporal correlation 
coefficient values 0.3< R  0.8 (0.4< R  0.8). Spatial agreement between CHIRPS and observational 
based maximum consecutive dry days during analysis period also found and could be explained by 
CDD spatial pattern correlation value (R = 0.631). Meteorological drought intensity represented by 
Average Drought Intensity (ADI) from 3-monthly SPI (SPI3) show spatial differences characteristic 
between west and east coast South Sulawesi region.  Lowest SPI3 value occurred especially during 
strong El Niño years.  
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