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Abstract. The authors analyze 3D problem on instability of a long arch cross-section opening 
using the method of discrete elements. Under analysis is loading by gravitational and tectonic 
stresses. Dilatancy, dry friction and viscosity are taken into account. It is assumed that 
contacting particles have an in-between elastic bonding element that fails under critical load. 
The article presents kinematic patterns of deformation and failure of surrounding rock mass 
around an underground opening.  

1. Introduction  
Buckling is one of the most widely spread processes induced by overburden pressure. Investigation of 
different types of buckling, review of the current knowledge on buckling mechanism and elaboration 
of measures aimed to predict and prevent such events is an important task, both theoretically and 
practically.  

Consider a boundary value problem. Let an arch cross-section opening be driven in a rock mass at a 
depth H from free surface (Figure 1). The task is to define stress state of surrounding rock mass and 
the nature of buckling in the floor of the opening.  

The in situ researches undertaken by different scientists show that buckling takes place in floor 
rocks when they are weaker than rocks in sidewalls and roofs of underground excavations. The 
explanation of the reason for the deformation reads that stronger rocks underlaid by weaker rocks act 
as a block die and deform considerably less as compared with the weaker underlying rocks.  

 
Figure 1. Schematic representation of the problem on floor buckling in underground opening. 
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The theoretical approaches to this problem can conventionally be divided into two groups. The first 
group are engineering solutions based on the hypothesis of a rigid block die [1–3]. These solutions use 
theories of limiting state and mostly consider deformation only of a part of rock mass (floor or roof). 
The material constraint of this approach is disregard of the rock mass loading history before limiting 
state. The second group rest upon the theory of elasticity and plasticity. The scope of stress state 
analysis in this case covers entire rock mass surrounding an underground opening [4–8]. Since 
displacements are small in elastic or elastoplastic formulations, the inference on buckling is based on 
the assumption of the floor rock loosening in the zone of rock crushing and on the analysis of strain 
field resultant from a boundary value problem solution.  

The concept of rock mass as a medium with inner sources and sinks of energy backs the two-
dimensional mathematical model constructed in [9, 10], considering internal block structure of rock 
mass, anisotropy of properties and sliding at block interfaces with regard to strength loss. The model is 
used to analyze numerically a problem on deformation of heavy rock mass surrounding a long 
horizontal opening with an arch cross-section. It is shown that zones of weakening and residual 
strength develop successively both in sidewalls and in floor and, finally, embrace the whole perimeter 
of the opening. The process of deformation is accompanied by uncontrollable dynamic release of 
elastic energy accumulated in the rock mass.  

Evidently, the continuum formulations based on the methods of the elasticity and plasticity theory 
need no hypothesizing on limiting states. At the same time, it is required to construct closed systems 
of equations. At present, generally acknowledged equations of deformation of a medium remain yet to 
be developed.  

Under such circumstances, it seems relevant to select an approach based on the discrete element 
method (DEM). This method allows determining evolution of stress state in rock mass both at the pre-
limiting stage and at the stage of transition to localization of shearing and failure. The method is 
advantageous for needing no hypotheses on limiting state and no continuum equations to be 
postulated.  

Originally, DEM was applied to solution of rock mechanics problems [15]. Now the method enjoys 
wide popularity in solving many problems in geomechanics [16, 17]. The essence of the method is 
replacement of a real medium by a packing of particles with introduction of laws of the particle 
interaction. The shape of the particles is a free parameter to be selected based on specific 
considerations. Mostly, it is assumed that the discrete elements have spherical form with the preset 
radii. This method induces no additional difficulties in solving problems with high (finite) values of 
strains and rotations. Thus, this method is a fundamental alternative to classical methods based on 
conventional knowledge on the continuum mechanics.  

2. Discrete element method  
According to DEM, a particulate material is represented by a set of N spherical particles (discrete 
elements). Each i-th element has a radius ri and possesses the known physical properties: density, 
elastic and viscous moduli, friction, cohesion, etc. (i = 1, …, N). Movement of a discrete element 
includes translational and rotational motions, and is given by  
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Here, points mean differentiation with respect to time t; xi is the radius-vector of the center of 
gravity of an i-th particle; θi is the rotation of an i-th particle relative to the coordinate axes; mi  is the 
mass; Ii is the moment of inertia; g is the gravitational acceleration; ric is the vector directed from the 
center of an i-th particle to the point of contact; the force fij acts on an i-th particle from the side of a j-
th particle and depends on the overlap of the particles and on the elastic and viscous moduli; Mr,ij is the 
moment of rolling resistance between particles or along the domain boundary. Summing in (1) and (2) 
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involves all elements and boundaries that contact the current i-th particle. The shape of discrete 
elements is assumed unaltered for the period of contact; therefore, the degree of deformation of the 
elements is characterized by the value of overlap of contacting particles.  

With the data on the law of motion and contact interaction between particles (equations (1) and 
(2)), as well as with the initial and boundary conditions, it is possible to construct solutions of the 
equations and to define evolution of stress state of a medium.  

The program support designed based on DEM at the Institute of Mining, SB RAS enables 
numerical consideration of different modes of motion in a granular material composed of individual 
spherical particles [18, 19].  

Below an illustration is given of the capacities of this method in the analysis of stress state in rocks 
and particulate media. Let a material specimen be composed of individual discrete particles  
(Figure 2a). The particles have the parameters: density ρi = 2500 kg/m3, elasticity modulus Ei = 3 GPa, 
Poisson’s ratio νi = 0.25, external friction angle φij = 25°, the diameters of the particles are selected 
from the uniform distribution over the interval from 0.0015 to 0.0025 m. The boundaries of domain of 
the specimen are perfectly smooth, the force of gravity is absent. Loading is implemented as uniform 
compression at a constant pressure P = 104 Pa and with a later on increase in σz oriented in parallel to 
the vertical axis towards the material. The overall deformation εz upon completion of loading was 0.3. 
Figures 2b and 2c show the plots of the relative stress σz / P and the relative volume Vr depending on 
the density of the initial packing. The curve 1 illustrates a dense packing, the curve 2 characterizes a 
loose packing. Obviously, it is possible to obtain materials with different strength properties by simply 
and only changing the initial density of specimens. The resultant consistent patterns are confirmed by 
in situ measurements and laboratory experiments [20].  

a b c 

 
  

Figure 2. (a) The numerical experiment on triaxial compression of a particulate material;  
(b) stress–strain relationship in the tests; (c) change in specimen volume under compression: 1—dense 
packing; 2—loose packing.  

A rock is a cohesive material; for this reason, the described model of particulate material 
deformation needs introduction of an additional bonding element (cohesion) between contacting 
particles. With this end in view, we use the procedure from [21–23].  

The increments in the forces and moments induced in the bonding element by the particle 
interaction are given by  

,ˆˆ,ˆˆ
,ˆˆ,ˆˆ
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where A is the intersection area between a particle and the bonding element; I and J are the inertia 
moment and the polar moment of inertia of the bonding element, respectively (Figure 3); Δun, Δut, Δθn 
and Δθt are the increments in the components of velocities and angular velocities in the normal and 
tangential directions, respectively. 

3

MSBA                                                                                                                                                  IOP Publishing
IOP Conf. Series: Earth and Environmental Science 53 (2017) 012012         doi:10.1088/1755-1315/53/1/012012



 
Figure 3. Schematics to find actual forces in bonding element.  

The maximum tension force and shear force caused in the bonding element by relative motion of 
particles are  
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where ),min(ˆ
ji rrR = . When the maximum tension force in the bonding element exceeds the tension 

bond strength ( cσσ >maxˆ ), or the maximum shear force is higher than the shear bond strength 

( cττ >maxˆ ) of the material, the bonding element fails and henceforth the particles are only subjected 
to the forces described by the equations (1) and (2). 

By way of illustration, Figure 4 depicts a numerical experiment on destruction of a cylindrical 
specimen simulating a rock core composed of individual particles with cohesion under compression. It 
is seen in Fig. 4b that the load distribution line contains both elastic strain branch, and branches of 
weakening and residual strength typical of destruction processes in real materials.  

a b 

  
Figure 4. Uniaxial compression of rock specimen—numerical experiment: (a) schematic of the 
experiment; (b) stress–average strain curve. 

In this way, by introduction of cohesion between discrete elements constituting a particulate 
material, it is possible to describe deformation and failure processes in cohesive rocks. Now we 
address again the problem on floor buckling in an underground opening. Figure 5 demonstrates the 
schematic of 3D numerical experiment. The experimental domain is represented by N = 92000 discrete 
elements with the radii selected from a uniform distribution over the interval from 0.05 to 0.15 m. 

In the problem under discussion, the opening has a width of 3 m and a height of 3.5 m; the size of 
the domain in the Oy axis direction is 2 m. The physical parameters of the particles are: density 
ρi = 2500 kg/m3, elasticity modulus Ei = 8 GPa; Poisson’s ratio νi = 0.25 and external contact friction 
angle φij = 28°. The stiffness coefficients of the particle bonding in the normal and tangential 
directions: tn kk ˆˆ = = 10 MPa; the critical bonding strengths: σc = 8 MPa and τc = 5 MPa. The 
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boundaries of the domain are rigid and perfectly smooth walls. The gravitational vector is oriented 
vertically downward and its magnitude is 9.81 m/s2. The lower boundary is assumed fixed.  

The loading process involves two methods. The first method is moving the upper boundary at a 
constant low velocity uz = const in the direction of the opening, with the left-hand and right-hand 
boundaries being fixed. The second method is shifting the left- and right-hand boundaries at a velocity 
ux = const in the direction of the opening, with the upper boundary being fixed.  

 
Figure 5. Numerical experiment on deformation of rock mass with a weakening in the form of an arch 
cross-section opening.  

a b c 

 
d e f 

 
Figure 6. Deformation of surrounding rock mass around an opening at fixed moments of time:  
(a)–(c) action of gravitational stresses; (d)–(f) action of tectonic stresses.  

The numerical experiment has discovered essential dependence of the opening perimeter 
deformation on the rock mass deformation history as a function of deformation method. When it is 
assumed that gravitational (vertical) stresses prevail, the opening sidewalls deform as Figure 7a–7c 
show. For dominating tectonic (horizontal) stresses, the failure pattern is shown in Figures 7d–7f 
where the instability and failure occur in the roof and floor of the opening. 

3. Conclusion  
To analyze buckling of floor rocks in mines, it seems most relevant to use the discrete element 
method. Under prevailing gravitational (vertical) stresses, failure takes places in the sidewalls of 
underground openings. Under dominating tectonic (horizontal) stresses, instability and failure occur in 
the floor and roof of the openings. 
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