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Abstract. Under analysis is an approach to mathematical modeling of structurally 
inhomogeneous rocks considering structural hierarchy and internal self-balanced stresses. The 
fields of stresses and strains at various scale levels of rock mass medium are characterized 
using the non-Archimedean analysis methods. It is shown that such model describes 
accumulationtion of elastic energy in the form of internal self-balanced stresses on a micro-
scale. The finite element algorithm and a computer program are developed to solve plane 
boundary-value problems. The calculated data on compression of a rock specimen are reported. 
The paper shows that the behavior of plastic strain zones largley depends on the pre-set initital 
micro-stresses. 

1. Introduction  
One of the key problems of geomechanics is calculation of stresses and strains in a unit element of rock 
mass. The body forces and the boundary conditions are pre-set. In the meanwhile some part of internal 
stresses in a self-stressing rock mass can be mutually balanced. And boundary conditions offer no 
information on them in this case. So, it is required to know the body forces, the boundary conditions and 
the conditions of how the rock mass was formed. Some information on self-balancing stresses is obtained 
experimentally, using special testing procedures [2, 3]. These data are useful in selecting parameters for a 
mathematical model of self-balancing stresses. One of the modeling methods introduces hypotheses on 
microdeformation of a medium, then uses averaging, and for the averaged values the continuum equations 
are derived. This approach assumes that the unit volume of the medium is subject to uniform stresses and 
strains [4].  

An alternative approach is based on using non-Archimedean variables. The model avoids the assumption 
of the uniform state of the unit volume. Equations of equilibrium and motion are formulated specifically for 
structural elements. The size of the elements is set in proportion to the value of n/1 , where n  is a sufficiently 
high natural number. Then, a discrete model is constructed. In the classical analysis, the next step is the 
analysis of the limit when ∞→n  and, accordingly, 0/1 →n . As a result, the finite difference equations 
transform into the differential equations. In the non-Archimedean analysis, the number n  tends not to infinity 
but to an actual infinitely high number ω . The size of a unit element tends to E . The value of E  is smaller 
than any positive rational number but 0>E . For this reason, the finite difference equations transform not in 
the differential equation but in the actual infinitesimal difference equations. They are analyzable at a varying 
degree of accuracy, e.g. assuming that 0=E , 02 =E  or 0>E , 02 =E , etc. Sometimes, the replacement of 
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n/1  by E  is of consequence. In the other situation, this replacement may of critical value. For instance, when 
the problem source parameters already include the values E , ω , or when new measurements of space and 
time on a macrolevel are included. Here we mean measurements included in the structure of a real number as 
a real number is not only a multiscale straight line segment of the length E  but an infinite entity attributed 
with a diameter of the order of E  (conclusion of Cantor’s concept of number [5]). 

2. Mathematical model  
This paper describes the analysis of the model of self-stressing rock mass (Figure 1, plane strain)  
[6, 7]. Initially, elastic particles are at the points of a square lattice. Sliding between the particles is 
possible in accordance with the laws of plasticity, dry or viscous friction, or their combinations. Along 
the diagonal, the particles are connected by elastic elements (a porous medium is ether elastic or of 
Vickers type). Forces applied to the elastic elements can be balanced by the forces applied to contacts, 
consequently, internal self-balancing stresses can be considerable in case that external stresses are 
absent. 

 
Figure 1. Model of a structurally nonuniform medium capable to accumulate elastic energy. 

Any mathematical model should satisfy certain consistency constraints, e.g. to convert into model 
of the linear elasticity theory in a special case. This offers a way for further generalizations. Let L2  be 
the size of a domain subject to deformation and nL /2  –be the size of a structural element of the 
domain (particle). It is assumed that particles are linearly elastic, and there are no pores and sliding at 
contacts of the particles is absent. Furthermore, it is assumed that point moments cannot propagate 
through the contacts. In this case, there are four force vectors F  and four displacement vectors u  for 
each particle. One vector conforms with two scalar components (plane strain). Temperature and other 
parameters can also be added. The total amount of the scalar unknowns is: )1(4 −nn —displacements 
at contacts, )1(4 −nn —forces at contacts, n8 —displacement at boundaries, n8 —forces at 
boundaries. Thus, we have nn 88 2 +  variables.  

Regarding the equations, two equations of equilibrium and one equation of moments are fulfilled 

for each particle in the set 2n , i.e. 23n  equations all in all. Then, at each of n4  boundary contacts, 
two conditions should be set (either forces or displacements, or combination), which gives n8  
conditions altogether. A key point is the constitutive relations. The four points DCBA ,,,  agree with 
the four vectors of displacement—eight degrees of freedom. Constitutive relations may only include 
such combinations of degrees of freedom, which are independent of translation and rotation of a 
particle, which means that three degrees of freedom are to be withdrawn. Consequently, there are five 
invariant combinations of displacements. The forces also have eight degrees of freedom. The vector of 
sum of forces and the moment are to be zero. Thus, constitutive relations connect five invariant 
combinations of displacements and five force characteristics. There should be five constitutive 

relations for one particle and 25n  constitutive relations for 2n  particles. This totals nn 88 2 +  
equations. Balance has converged: the system is closed and reduces to nn 88 2 +  algebraic equations in 
terms of nn 88 2 +  unknowns.  
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Now, a unit volume needs five constitutive relations. On the other hand, there are merely three 
constitutive relations for an elastic body. This means that the classical theory contains assumptions 
that match two equations, moreover, these equations are of the same significance as the equations 
involved in the Hooke law. Let us formulate them explicitly.  

First, we select five invariant combinations of displacements for the constitutive relations. The 
number of decision is unlimited. We chose the closest variant to the linear elasticity  
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Here, δ  denotes increment within a particle. Now, it is possible to re-write the equations of the 
classical elasticity theory as  
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where ν,E –const; lFijij 2/=σ , 2112 σσ = , 2,1, =ji . The first three equations are the Hooke law. 
The last two equations are not formulated explicitly in the classical theory, although it contains some 
information about them. Where? The classical elasticity theory postulates diffeomorphism [8]. In other 
words, it is assumed that all functions are sufficiently smooth. This means that any local functions can 
be represented by a linear function, for instance  
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where 2211 ...,, aa  are constants. Placing (4) in (2) yields 01 ≡κ , 02 ≡κ . The converse is valid, too. 
Consequently, the wanted two equations from (3) are “hidden” in the postulate of diffeomorphism. 
Technically, this allows transition from “derivatives” within the limits of a particle, ixδδ / , to the 
ordinary derivatives ix∂∂ / , i.e. to classical theory. Accordingly, the consistency condition for the 
models under analysis is satisfied.  

In case of no diffeomorphism, it seems relevant to use the non-Archimedean analysis 
representation  
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Here, the fixed values 21, xx  are the centers of particles, and 21,ξξ  are the coordinates within a 
fixed particle. The nonlinearity of the functions with respect to the coordinates 21,ξξ  agrees with the 
case when 01 ≠κ , 02 ≠κ . In a general case of allowable sliding at contacts and eigen stresses, the 
situation will be similar. From the viewpoint of mechanics, the model in Figure 1 conforms with the 
parallel connection of elastic and plastic elements in Figure 2. 
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Figure 4. Inter-grain sliding curve.  

Figure 2. Mechanical model of a medium having structure.  

The macrostress Aσ  matches the stress Bτ  in a porous medium and the stress Ct  at the particle 
contacts. Depending on CC ut −  curve and on the values of the elastic constants, the AA u−σ  curve 
may have either ascending or descending branches. Of special interest is the case when ptC = , 

pB −=τ , and, thus, 0=Aσ : the element is subject to self-stressing. Depending on the value of the 
eigen stresses p , the AA u−σ  curve behaves differently: it is possible that 0>∆ Aσ , 0>∆ Au , 
i.e., the curve first ascends and then descends. Under high p  it can be that 0>∆ Au  while 

0<∆ Aσ . In this case, the element behaves as a source of energy.  
We introduce micro-variables to describe averaged micro-strains and micro-stresses in grains, 
















⋅=



















12

22

11

12

22

11

t
t
t

T
t

t

t

ε
ε
ε , 
















⋅=



















12

22

11

12

22

11

τ
τ
τ

ε
ε
ε

τ

τ

τ

T , in porous medium, 















⋅=



















12

22

11

12

22

11

p
p
p

P
p

p

p

ε

ε

ε
, at the grain contacts, 
















⋅=



















12

22

11

12

22

11

t
t
t

R
R

R

R

ε
ε
ε

 (Figure 3), where the third order square matrixes RPT ,,  depend, respectively, on 

elastic constants of grains and porous medium, and on moduli of plastic sliding at the contacts of 
grains. The inter-grain sliding curve is approximated by a piecewise-linear function as is shown in 
Figure 4 [9, 10]. The introduced values obey the consistency conditions given by  
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Figure 3. Internal structure of the medium 
(orientations of effective forces).  
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Here, ** , ijij σε  are the components of the averaged macro-strains and macro-stresses in the local 

coordinates connected with the orientation of the grain matrix, 10 << m  is understood as a 
characteristic of clear opening. After elimination of the micro-variables, the constitutive relations will 
be given by  
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where ijij σε ,  are the components of the averaged macro-strains and macro-stresses in arbitrary 

rectangular coordinates; the matrix W  is reflective of the orientation of the grain matrix relative to the 
rectangular coordinates and depends on α  (refer to Figure 3).  

Based on the described approach and the mathematical model of a structurally nonuniform rock 
mass (8), the finite element algorithm and software program are developed to solve 2D boundary value 
problems, considering internal self-balancing stresses.  

3. Numerical model  
This section exemplifies calculation of a geomaterial compression. Let a rectangular specimen (see 
Figure 5) be compressed between two parallel plates displaced vertically. The boundary conditions are 
given by  
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where iu∆ , ijσ∆  are the increments in the displacements and stresses at the certain segment of the 

boundary; d∆  is the increment of the loading parameter (due to nonlinearity, the problem is solved in 
the quasi-static formulation, by loading steps). Let the parameter of the orientation of the grain matrix 
be set as 4/πα =  and the parameter of the clear opening—as 5.0=m . All stresses are referred to 
the value of a maximum shear stress at the inter-grain contacts, maxτ  (see Figure 4): 1max =τ , 

4.0=resτ . It is noteworthy that with such orientation of the grain structure, the influence of self-
balancing shear stresses in the medium is the most pronounced.  

The aim of the numerical modeling is to assess influence of the self-balancing (eigen) stresses. To 
this effect, three calculation series are performed for three different scenarios of setting the self-
balancing stresses. In all series, the calculations end upon reaching one and the same value of the 
loading parameter, namely, 012.0/ −=HdH .  

The first calculations series is performed for a geomaterial specimen without eigen self-balancing 
stresses, i.e. all components 0== ijij pt  at the start time and, consequently, 0=ijσ . In this case, 

each point of the medium is in the position of the point O  in the plot of the contact interaction of 
grains in Figure 4. Figure 5a illustrates the calculation results. Hereinafter, the unshaded areas show 

the state of strengthening at the contacts: 10 12 << t , 112 γε <R ; the light-grey color marks the zones 

of weakening between grains: 14.0 12 << t , 2121 γεγ << R ; the dark-grey color depicts the regions of 

the residual shear strength: 4.012 =t , 212 γε >R .  
Let the start-time shearing be set as 5.012 −=t  at the contacts of grains and as 5.012 =p  in the 

porous medium. The other components of the micro-stress tensors of grains and pores are assumed 
zero. In the plot in Figure 4, the pre-set initial conditions conform with the point A . Apparently, the 
internal micro-stresses balance each other so that all macro-stress components 0=ijσ . The eigen 
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stresses are set so that they “resist” compression. This situation is illustrated in Figure 5b. It is evident 
that the pre-set self-balancing stresses greatly decelerate growth of the plastic strain zones: these zones 
cover smaller domain as against the case of the absent self-balancing stresses under the same external 
force. Figure 5c shows the calculation results with the alternate self-balancing stresses 5.012 =t , 

5.012 −=p , which fall at the point B in the plot in Figure 4. In this case, these stresses “contribute” to 
compression. From the comparison of the deformation patterns obtained under equal external loading 
in Figures 5a–5c, the eigen stresses exert a considerable influence on evolution of plastic strain zones, 
and can either decelerate (Figure 5b) or accelerate (Figure 5c) expansion of plastic deformation and 
failure of specimens. 

(a)                       (b)                                     (c)  

   
Figure 5. Plastic deformation zones: (a) without initial stresses included; (b) the initial stresses 
“resist” compression; (c) the initial stresses “contribute” to compression. 

4. Conclusion  
The proposed approach allows mathematical modeling of deformation of structurally nonuniform 
media, considering internal self-balancing stresses.  

The internal self-balancing stresses have a considerable influence on the behavior of plastic 
deformation zones, and can both decelerate and accelerate failure. 
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