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Abstract. Forest plays an important role in hydrological cycle, and forest changes will 
inevitably affect runoff across multiple spatial scales. The selection of a suitable indicator for 
forest changes is essential for predicting forest-related hydrological response. This study used 
the Meijiang River, one of the headwaters of the Poyang Lake as an example to identify the 
best indicator of forest changes for predicting forest change-induced hydrological responses. 
Correlation analysis was conducted first to detect the relationships between monthly runoff and 
its predictive variables including antecedent monthly precipitation and indicators for forest 
changes (forest coverage, vegetation indices including EVI, NDVI, and NDWI), and by use of 
the identified predictive variables that were most correlated with monthly runoff, multiple 
linear regression models were then developed. The model with best performance identified in 
this study included two independent variables -antecedent monthly precipitation and NDWI. It 
indicates that NDWI is the best indicator of forest change in hydrological prediction while 
forest coverage, the most commonly used indicator of forest change is insignificantly related to 
monthly runoff. This highlights the use of vegetation index such as NDWI to indicate forest 
changes in hydrological studies. This study will provide us with an efficient way to quantify 
the hydrological impact of large-scale forest changes in the Meijiang River watershed, which is 
crucial for downstream water resource management and ecological protection in the Poyang 
Lake basin. 

1.  Introduction 
The relationship between forest change and streamflow is an important research subject for a century 
[1]. To predict hydrological response to forest changes, the first thing is to quantify forest changes. 
Forest coverage is often used as an indicator to express forest changes simply because it is easy to be 
obtained [2-8]. However, forest coverage only serves as a basic indicator without differentiating forest 
species and forest change types, and fails to express the spatial pattern of forest changes and 
subsequent forest recovery processes. Equivalent roaded area (ERA) and equivalent clear-cut area 
(ECA) are believed to be better indicators than forest coverage because they can account for dynamic 
vegetation conditions or changes following forest disturbances. ERA was originally developed in the 
early 1980s by Region 5 of the USDA Forest Service to evaluate channel destabilization [9]. It works 
for assessing sediment and erosion yield and is not spatially explicit and the impacts of an activity 
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cannot be tested against its location in a watershed [10, 11]. A similar index developed by the USDA 
Forest Service is ECA, which is often used to assess the cumulative effects of forest harvesting on 
annual runoff. The ECA concept has also been widely used in Canada, particularly in British 
Columbia (BC) and Alberta. Roads, clear-cuts, burned areas, and partial cuts can all be expressed as 
“equivalent clear-cut area.” There are various revised versions of ECA calculation procedures, but the 
core concepts are similar [12-15]. In a revised version developed by the BC Ministry of Forests, ECA 
is defined as the area that has been clear-cut, with a reduction factor to account for the hydrological 
recovery due to forest regeneration [14]. Although it was originally designed for clear-cut areas, ECA 
can be applied to wildfire-killed areas, roads, and other open spaces. Research has established the 
relationships between vegetation growth (ages or tree heights) and hydrological recovery rates 
following logging so that ECA can be derived spatially and temporally in a watershed [16-18]. 
Although the ECA is believed to be the best indicator for assessing forest change effects on hydrology 
in large forest-dominated watersheds, its application is limited mainly due to the fact that the ECA 
calculation for a watershed is time-consuming, and requires detailed historical data of over millions of 
harvested, burned, and infested blocks. Moreover, professional judgments are always needed in 
determining the hydrological recovery rates of different tree species for each disturbance type in 
different watersheds. In China, there is a lack of continuous forest coverage data since forest resources 
inventory is conducted every five years. In most watersheds, detailed historical records on forests 
including species, disturbance type, and disturbed area are deficient. This calls for a need to find a new 
indicator of forest change for predicting forest change-induced hydrological response in China. 

Remote sensing sensor systems detect reflected or emitted radiation from features on the Earth’s 
surface. New techniques have been developed for future extraction where Enhanced Vegetation Index 
(EVI) [19], Normalized Difference Vegetation Index (NDVI) [20, 21] and Normalized Difference 
Water Index (NDWI) [22] are most widely used for satellite image processing in recent decades. The 
emergence of these vegetation indices (NDVI, EVI, NDWI) derived from remote sensing data makes 
the assessment of historical forest changes feasible at a larger spatial scale. The remote sensing 
vegetation indices-based approach requires fewer fieldworks to collect detailed vegetation information 
from stand-level to watershed-level as compared to their counterparts. Moreover, it is an integrated 
index that can express all types of forest changes including both forest loss (deforestation due to 
logging, pest infestation, fire, urbanization, landslides) and forest gain (afforestation and reforestation). 
However, a question arising here then is which vegetation index has best performance when assessing 
hydrological response to forest changes in a large forested watershed. In order to answer this question, 
this study used the Meijiang River, one of the headwaters of the Poyang Lake as an example to 
identify the best indicator of forest changes to predict forest change-induced hydrological responses. 
Non-parametric correlation analysis was conducted first to detect the relationships between monthly 
runoff and its predictive variables including antecedent monthly precipitation and indicators for forest 
changes (forest coverage, vegetation indices including EVI, NDVI, and NDWI), and by use of the 
identified predictive variables that were most correlated with monthly runoff, multiple linear 
regression models were then developed. The indicator of forest change included in the model with best 
performance can be viewed as the best indicator to predict forest change-induced hydrological impact. 

2.  Study Area 
The Meijiang watershed, situated in the upper of the Ganjiang River, the Poyang Lake basin of China 
(Figure 1). The majority of its tributaries start from Ningdu and Shicheng. The Meijiang River 
originates from the northeast of Ganzhou and flows southwest, and then merges into the Gongjiang 
River near Yudu. The Gongjiang River and Zhangjiang River converge in the territory of Ganzhou 
Region and make up the Ganjiang River. Hence the Meijiang River is called the source of the 
Ganjiang River. The drainage network of the Meijiang River watershed is very dense and the drainage 
area is approximately 6310 km2. 
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Figure 1. Location of the Meijiang watershed. 
The average elevation for the Meijiang watershed is 379 m and most of it is from 300 to 500 m. 

Soil types mainly include mountainous red soil, purple soil and yellow soil, with light loam and sandy 
loam in texture. The watershed is rich in forest resources with diverse tree species. Forest coverage is 
about 71% in 2006. Main vegetation types in this watershed are subtropical evergreen broad-leaved 
and coniferous forests. The dominant tree species include Pinus massoniana Lamb.，Castanopsis fabri, 
Castanopsis fissa, Cunninghamia Lanceolata and moso bamboo. Most of the forests distribute on the 
north, southeast and southwest of the Meijiang River watershed. 

The climate in the Meijiang watershed belongs to humid subtropical monsoon featured with hot 
summer and long rainy season. Average annual mean temperature is 18.7 ℃ . The maximum 
temperature is observed in July (monthly average 28.5 ℃) with the minimum temperature in January 
(monthly average 7.5 ℃). The rainy season lasts from April to June and the dry season is from 
September to November. Average annual precipitation is 1804.1 mm from 1989 to 2006. From the 
1960s to the early 1980s, the watershed underwent many disturbances, especially, soil erosion due to 
early deforestation. After the large-scale reforestation and protection programs in the mid-1980s, the 
forest coverage increased from 41% in 1989 to 71% in 2006 in the watershed [23]. 

3.  Data description 

3.1.  Hydrological and climate data 
Daily flow data from 1989 to 2006 were collected from Fenkeng hydrometric station (Figure 1), 
situated at the outlet of the Meijiang watershed, which were used to calculate monthly runoff. There 
are six active national weather stations available within and around the Meijiang watershed (Figure 1). 
In this study, the historical climate data including precipitation and temperature was used. Given the 
high spatial variability of precipitation in the mountainous region, precipitation data from one station 
fails to capture the detailed spatial variation in precipitation input for the whole watershed. Thus, we 
use the ANUSPLIN model to generate spatially interpolated precipitation data. This approach is 
widely used to generate spatial interpolation of hydrometeorological variables [24]. 
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3.2.   Vegetation data 
There are two types of vegetation data: forest coverage and remote sensing-based vegetation indices. 
Forest coverage data were provided by the Ganzhou Regional Forestry Bureaus of Jiangxi Province 
[23]. According to the forest coverage data, forest coverage rapidly increased from 41% in 1989 to 65% 
in 1994 due to the implementation of various large-scale reforestation programs, and steadily rose to 
71.0% in 2006 in this watershed. Remote sensing data Landsat Thematic Mapper (TM) and Enhanced 
Thematic Mapper (ETM) images for the Meijiang River watershed were downloaded from the United 
States Geological Survey (http://glovis.usgs.gov/). The Landsat-5 TM satellite was launched by The 
National Aeronautics and Space Administration (NASA) in 1984. Although more advanced satellite 
images are available, only time series of Landsat TM images with cloud cover less than 10% were 
selected in order to cover the whole study period from 1989 to 2006. Several ETM images were also 
used when TM images were missing. In this study, 48 high quality images with a resolution of 30 m 
were processed and extracted to calculate vegetation indices including EVI, NDVI, and NDWI. The 
EVI is developed to enhance the vegetation signal by reducing influences form the atmosphere and 
canopy background and to improve sensitivity in high biomass regions [19]. The NDVI is a simple 
numerical indicator that can be used to analyze remote sensing measurements from a remote platform 
and assess whether the target or object being observed contains live green vegetation or not [25]. The 
NDWI is utilized for assessing water substance of vegetation canopy [22]. The processing of the 
images involved the conversion of digital numbers into reflectance values and a relative atmospheric 
correction to normalize remotely sensed images for further analysis. Then, the values of EVI, NDVI, 
and NDWI from the processed images were calculated by the following equations for the whole 
watershed (Figure 2).  

  ( ) / (1 .. )2 6 7 55 nir red nir red blueEVI ρ ρ ρ ρ ρ× − + + −=                                (1) 

( ) / ( )nir red nir redNDVI ρ ρ ρ ρ= − +                                               (2) 

( ) / ( )nir swir nir swirNDWI ρ ρ ρ ρ= − +                                              (3) 

where ρnir, ρred, ρblue and ρswir are the reflectance of the near-infrared, the reflectance of the red, the 
reflectance of the blue, and the reflectance of the short wave infrared, respectively. 

     
(a)                                                  (b)                                                       (c) 

Figure 2. (a, b, c) The values of EVI, NDVI and NDWI distributed in the Meijiang watershed on 
December 21, 2006. 
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4.  Method 
In this study, statistical analysis including non-parametric tests (Mann-Kendall and Spearman rank 
tests) and stepwise liner regression were utilized to identify the best indicator of forest change in 
hydrological prediction.  

4.1.  Correlation analysis 
The correlation analysis is found to be an effective approach to investigate the relationships among 
environmental variables, particularly in identifying the causal relationships from possible explanatory 
variables [26, 27]. In this study, non-parametric correlation tests including Mann-Kendall and 
Spearman rank tests were firstly performed to detect the relationships between monthly hydrological 
variables (monthly runoff (Q(t)), one-month antecedent monthly runoff (Q(t-1)), one-month and two-
month subsequent monthly runoff (Q(t+1) and Q(t+2))) and their predictive variables including 
precipitation, forest coverage and vegetation indices (Table 1). In the prediction of monthly runoff, 
climatic variables such as antecedent monthly precipitation (P(t-1)) is believed to a powerful predictor. 
Thus, antecedent monthly precipitation was also adopted in this analysis. Vegetation indicators used 
included antecedent monthly forest coverage (FC(t-1)), monthly EVI(t), NDVI(t), and NDWI(t). The 
predictive variables that were most correlated with hydrological variables were further adopted in the 
development of multiple linear regression model for the prediction of hydrological response to forest 
changes.  

4.2.  Stepwise linear model 
Multiple linear regression is a popular alternative technique for hydrological modelling with limited 
data requirements on watershed conditions. In this study, the choice of predictive variables is carried 
out by the stepwise selection that automatically keeps the significant independent variables in the 
multiple linear regression model. The generated multiple linear regression models were then used to 
predict monthly runoff response to forest changes. The model performance was evaluated by the 
statistics coefficient of determination (R2) and Nash-Sutcliffe model efficiency coefficient (E), which 
are widely used in hydrological modelling and are proved to be excellent in measuring the 
effectiveness of a model in terms of its prediction ability [28, 29]. Value of R2 and E can be calculated 
by Equation 4 and 5. Traditionally, hydrological models were calibrated and validated by split-sample 
tests where available data were simply divided into two sets by time, which may failed to capture 
dynamic interactions between runoff and its drivers. To overcome the shortcomings of the traditional 
split-sample test, a random selection approach was adopted where the data were randomly selected 
and then grouped into calibrated and validated periods. In this study, 36 sets of data were used in the 
calibration while 12 sets of data were applied in the validation. 

2 2 2 2
, , ,

1 1 1
,[ ( )( )] / [ ( ) ( ) ]

n n n

o s i s o i o s i s
i i i

o iR Q Q Q Q Q Q Q Q
= = =

= − − − −∑ ∑ ∑
                                 (4) 

2 2
, ,

1 1
,1 ( ) / ( )

n n

s i o i o
i i

o iE Q Q Q Q
= =

= − − −∑ ∑
                                                                            (5) 

where 𝑄𝑠,𝑖is the simulated monthly runoff for the ith month; 𝑄𝑜,𝑖 the observed monthly runoff for 
the ith month;𝑄�𝑠 is the average simulated monthly runoff for the whole period;𝑄�𝑜the average observed 
monthly runoff for the whole study period and n the number of months for the whole study period. 

5.  Results 

5.1.  Correlation analysis 
As suggested by both Mann-kendall and Spearman rank tests, significant correlations between 
antecedent monthly runoff (Q(t-1)) and antecedent monthly precipitation (P(t-1))/NDVI(t) / NDWI(t) 
were detected at α=0.01(Table 1). Thus, these variables were kept as input candidates in stepwise 

International Conference on Energy Engineering and Environmental Protection (EEEP2016)          IOP Publishing
IOP Conf. Series: Earth and Environmental Science 52 (2017) 012059           doi:10.1088/1755-1315/52/1/012059

5



linear models with antecedent monthly runoff (Q(t-1)) as a dependent variable. However, in order to 
compare the performance of different vegetation indicators, we also built the model including FC (t-1) 
and EVI(t). 

Table 1. Results of non-parametric correlation tests. 
Parameter Test Q (t-1) Q(t) Q(t+1) Q(t+2) 

P(t-1) Kendall’s correlation coefficient 0.627* 0.439* 0.444* 0.259 
 Spearman correlation coefficient 0.807* 0.611* 0.642* 0.377 
FC(t-1) Kendall’s correlation coefficient 0.021 0.179 0.229 0.174 
 Spearman correlation coefficient 0.044 0.244 0.327 0.290 
EVI Kendall’s correlation coefficient 0.166 0.173 -0.030 -0.182 
 Spearman correlation coefficient 0.229 0.245 -0.050 -0.283 
NDVI Kendall’s correlation coefficient 0.368* 0.173 0.034 -0.272 
 Spearman correlation coefficient 0.507* 0.289 0.045 -0.410 
NDWI Kendall’s correlation coefficient 0.375* 0.281 0.081 -0.252 
 Spearman correlation coefficient 0.538* 0.428 0.122 -0.380 

                 *Significant atα=0.01 

                              We took the time of remote sensing images (t) for benchmarks 

5.2.  Model selection 
Table 2 provides the descriptions of five multiple linear regression models developed using selected 
input variables. Table 3 shows the performance of fitted models in both calibration and validation 
periods. According to the values of R2 and E in both calibration and validation periods, model RM3 
with P(t-1) and NDWI(t) as predictors showed best performance as compared to RM1, RM2, RM4 and 
RM5. Thus, the RM3 model was eventually used to predict the monthly runoff change due to forest 
changes (Figure 3) and NDWI was identified as the best indicator of forest changes in hydrological 
prediction in the Meijiang watershed.  

6.  Discussion 

6.1.  Relationship between vegetation change and monthly runoff 
As suggested by the correlation analysis, monthly runoff can significantly grow with increasing 
vegetation indices due to continuous reforestation or afforestation. It indicates that more forests will 
lead to more monthly runoff in the study watershed. This could be related to the fact that planted tree 
species was mainly Pinus massoniana Lamb after native forests were logged. Unlike previous native 
forests, most planted forests in the Meijiang watershed are featured with low canopy closure and very 
poor understory vegetation. After plantation, the watershed may thus have lower transpiration by 
newly planted trees and understories than before. Therefore, more runoff is expected after large-scale 
tree plantation. This is in accordance with some studies in Russia and China, as well as in some cloud 
forests [1]. However, this finding is different from many small watershed studies where forest increase 
has reduced monthly runoff due to the fact that forest growth can increase interception and 
evapotranspiration, resulting in less water being available for runoff generation [30]. Thus, a definite 
conclusion the relationship between forest and water remains inconsistent.  

Table 2. The list of model candidates. 
Models Dependent Independent Model Structure 
RM1 Q(t-1) P(t-1) Q(t-1)=15.98+0.43×P(t-1) 
RM2 Q(t-1) P(t-1),NDVI Q(t-1)=-45.55+0.41×P(t-1)+107.41×NDVI 
RM3 Q(t-1) P(t-1),NDWI Q(t-1)=-30.23+0.40×P(t-1)+240.17×NDWI 
RM4 Q(t-1) P(t-1), FC Q(t-1)=69.84+0.43×P(t-1)+77.45×FC 
RM5 Q(t-1) P(t-1), EVI Q(t-1)=0.85+0.41×P(t-1)+60.10×EVI 
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Table 3. The performance of five models for both the calibration and validation periods. 
Period Evaluation 

statistics 
RM1 RM2 RM3 RM4 RM5 

Calibration period 
(training) 

R2 0.74 0.78 0.84 0.75 0.76 

 E 0.74 0.78 0.83 0.75 0.76 
Validation period (testing) R2 0.82 0.85 0.87 0.81 0.74 
 E 0.73 0.79 0.77 0.73 0.67 

 

 
(a) 

 
(b) 

Figure 3. Predicted and observed streamflow in the calibration period (a)  

and the validation period (b) 

6.2.  Quantification of forest changes  
Forest change is often expressed by forest coverage simply because it is easy to be obtained [7, 8]. 
However, forest coverage only serves as a basic indicator without differentiating forest species and 
forest disturbance types, and fails to express the spatial pattern of forest changes and subsequent forest 
recovery processes. Equivalent roaded area (ERA) and equivalent clear-cut area (ECA) are believed to 
be better indicators than forest coverage because they can account for dynamic vegetation conditions 
or change following disturbance, but their application is limited mainly due to the fact that the ERA or 
ECA calculation for a watershed is time-consuming, and requires detailed historical data of over 
millions of harvested, burned, and infested blocks. In China, there is a lack of continuous forest 
coverage data since forest resources inventory is conducted every five years. In most watersheds, 
detailed historical records on forests including species, disturbance type, and disturbed area are 
deficient or with poor control of data quality, especially in the remote mountainous region. This study 
suggests that vegetation indices such as NDVI and NDWI derived from remote sensing data can be 
effective indicators of forest changes when assessing hydrological response to forest changes. The 
NDWI was found to be the best indicator of forest changes in the Meijiang watershed as indicated by 
model performance of five multiple linear regression models. This is may be due to the great 
sensitivity of NDWI to water substance of vegetation canopy. The quantification of forest changes by 
NDWI requires fewer fieldworks to collect detailed vegetation information from stand-level to 
watershed-level as compared to other indicators of forest changes. Moreover, it is an integrated index 
that can express all types of forest changes including both forest loss (deforestation due to logging, 
pest infestation, fire, urbanization, landslides) and forest gain (afforestation and reforestation) over 
time (since 1980s). Therefore, NDWI can be widely applied in forested watersheds in China to 
quantify forest changes as well as to be used for the prediction of forest change-induced runoff 
changes. A brief comparison of pros and cons between these indicators is presented in Table 4. 
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Table 4. Methods for quantifying forest disturbances 
Name Advantage Disadvantage 

Forest coverage Simple calculation 
Only available for single disturbance 
No consideration of hydrological recovery 

ERA 
(Equivalent roaded area/acre) 

Accounts  for  various  types of 
disturbance: assesses erosion risk 

and sediment yield 

Complex calculation 
No consideration of hydrological recovery 
Lacks spatial representation(such as 
position of harvest) 

ECA  
(Equivalent clear-cut area) 

Accounts for  various  types of 
disturbance,   

Considers disturbance severity 
and hydrological recovery 

Complex calculation 
Lacks spatial representation (such as 
position of harvest) [31] 
 

NDWI 
(Normalized Difference Water 

Index) 

Simple calculation, objectivity,  
Considers water substance of 

vegetation canopy 

Poor accuracy 
No consideration of hydrological recovery 

6.3.  A new approach for forest-runoff modelling 
The large watershed studies on hydrological response to forest changes are fewer than small watershed 
studies, which is mainly constrained by the lack of a suitable and efficient methodology, the lack of a 
comprehensive indicator for forest changes over space and time, and the availability of long-term data 
on hydrology, climate, and forest. In this study, the multiple linear regression model where the 
antecedent monthly runoff served as a dependent variable, and the antecedent monthly precipitation 
and NDWI served as independent variables was found as the best fitted model to predict monthly 
runoff response to forest changes. In comparison to expensive experimental watershed approach and 
time-consuming and data-intensive hydrological modelling, this statistical model appears to be a very 
efficient tool for assessing hydrological response to forest changes. It can be applied to predict 
historical or future runoff response due to forest changes in both small and large watersheds where 
remote sensing, hydrological and climate data are available. It can also be used to predict runoff with 
precipitation and NDWI data in ungauged forested watersheds. This can be particularly true given that 
in the remote area of Southwest China, for example, covered by dense native forests with only short-
term or without hydrological data, we can use this simple approach to estimate runoff by use of radar-
precipitation and remote sensing data. This prediction can also be very useful in water resource 
management and forest protection. For example, the West Route of South–to-North Water Transfer 
Project involves drawing water from the Upper Yangtze River in the Southwest China and supplying 
water to the Yellow River. The large-scale project will cause negative effects on forests in water 
source region. Thus, we can use this model to predict the impact of the project-associated forest 
changes on runoff of watersheds in Southwest China in an efficient way. 

7.  Conclusions 
This study used the Meijiang watershed as an example to identify the best indicator of forest changes 
to predict forest change-induced hydrological responses and to develop a statistical model to provide 
an efficient assessment on hydrological response to forest changes. According to this study, NDWI is 
the indicator of forest change that is most related to monthly runoff in the Meijiang watershed. It 
indicates that NDWI is the best indicator of forest change in hydrological prediction while forest 
coverage, the most commonly used indicator of forest change is insignificantly related to monthly 
runoff. It also showed that a multiple regression model two independent variables -antecedent monthly 
precipitation and NDWI can be a very efficient way to predict monthly runoff, as well as to quantify 
the hydrological impact of large-scale forest changes in the Meijiang River watershed or other similar 
watersheds, which is crucial for downstream water resource management and ecological protection in 
the Poyang Lake basin. However, it is important to note that the success of this statistical model is 
heavily dependent on the quality of remote sensing images, for example, images with low cloud cover 
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10%. And hydrological processes cannot be fully explained in this model. Therefore, this approach as 
a substitute for hydrological models can be a very useful tool for forest resources and water resources 
management in watersheds with limited data.   
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