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Abstract. A fixed-mesh approach has been developed to facilitate predicting a certain class of 
gas-liquid-rigid interaction problems. All the basic equations are discretized on a Cartesian grid 
in a finite-difference manner. The Volume-Of-Fluid and Boundary Data Immersion methods 
are employed to treat the gas-liquid and fluid-rigid interfaces, respectively. A hybrid OpenMP-
MPI approach is adopted for parallel computing. The developed code is validated through 
comparisons with experiments of an oil-air flow driven by a rotating disk with holes. The 
simulated results demonstrate the capability in capturing the velocity distributions.  

1.  Introduction 
Gas-liquid flows driven by rotating rigid objects appear in many engineering applications. The 
interplay among centrifugal, buoyancy, viscous and surface tension forces gives rise to a rich 
behaviour involving the gas-liquid and fluid-rigid interface motions. Large-scale simulations of 
multiphase flows are expected to be useful for complementing experiments and gaining insight into 
the dynamics. It is desirable that the numerical method is efficient and robust for massively parallel 
computing.  

Direct numerical simulation of interfacial flows is often formidable mainly due to the 
spatiotemporal change in moving and deforming interface and the high degree of freedom. There are 
currently several approaches classified with respect to the numerical treatment how the kinematic and 
dynamic interactions are coupled on the interface. When addressing fluid engineering problems of 
practical applications with complex boundary, one has preferably employed a Lagrangian method 
using a finite element mesh. The numerical methods include Arbitrary Lagrangian Eulerian [1] and 
Deforming-Spatial-Domain/Stabilized Space-Time [2] approaches. If the body-fitted mesh is provided, 
the state-of-the-art Lagrangian approaches are satisfactory for achieving accurate predictions. 
However, for a system involving complex boundary, it requires considerable efforts to generate the 
high quality mesh and to reconstruct the mesh topology when the mesh element is added or deleted. 
Moreover, in parallel computing, one often encounters nontrivial issues how to keep the 
computational-load balance of each compute node in the domain decomposition, how to optimize the 
data communication between the Eulerian and Lagrangian frames, and so on. In the present study, we 
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focus on a fixed-mesh approach, which releases numerical simulations of gas-liquid-rigid motions 
from the mesh generation/reconstruction procedure and facilitates a prediction of a certain class of the 
problems. For the interface recognition, we use the rigid and gas volume fractions (see figure 1). Note 
that such an approach has been already applied to practical problems [3]. We implement novel 
methods to realize efficient and robust simulations of the gas-liquid flow interacting with the rigid 
body [4]. 

 

 
Figure 1. Schematic illustration explaining the interface recognition in the present fixed-mesh 
approach. The rigid and gas volume fractions distinguish among the rigid, gas and liquid phases. The 
contour at 0.5 indicates the interface. 

 
In direct numerical simulations of multiphase flows, fixed-mesh approaches known as interface-

capturing methods (for instance, Volume-Of-Fluid (VOF) [5], level set [6], and phase field [7, 8] 
methods) are often employed. One set of governing equations is written over the whole flow field, 
referred to as a one-fluid formulation [9]. For the gas-liquid flows, we focus on the VOF method, 
where the volume fraction of an each phase is updated as a solution to the advection equation. The 
VOF method exactly guarantees the numerical conservation of the volume fraction as long as the 
advection term is discretized in a flux-divergence form. However, since the advection equation 
includes no diffusion term, a special treatment is required to prevent the numerical instability and to 
maintain the sharp interface, simultaneously. The numerical methods for maintaining the sharp 
interface include Simple Line Interface Calculation (SLIC) [10], Piecewise Linear Interface 
Calculation (PLIC) [11], and Multi-dimensional Tangent of Hyperbola INterface Capturing 
(MTHINC) [12] methods. We employ the MTHINC method, which imposes a grid-scale smoothness 
on the volume fraction profile across the interface, and relieves the singularity problem due to the 
jump thereof. Further, in view of computational efficiency, the MTHINC procedure and the one-fluid 
formulation readily exploit vector processing and reduce load imbalance in parallel computing.  

To address fluid-rigid interaction problems, the Immersed Boundary (IB) method [13, 14] has 
been frequently used as a fixed-mesh approach. In the IB method and a number of methods derived 
therefrom, the dynamic effect of the rigid body on the fluid flow is considered as an artificial body 
force in the fluid momentum equation to impose the no-slip boundary condition approximately on the 
interface. Although many options for the forcing have been explored so far, the body force expression 
itself makes it difficult to couple the pressure and the forcing and to satisfy the mass conservation, 
simultaneously. When a standard numerical algorithm for incompressible fluid flows is used in time-
marching, the solenoidal condition of the velocity vector or the kinematic condition on the boundary is 
likely to be deteriorated. In the present study, we employ the Boundary Data Immersion (BDI) method 
[15], which solves a meta-equation written over the entire domain in a temporally discretized form 
instead of the fluid equation with the artificial forcing. The BDI method ensures exact enforcement of 
the solenoidal condition and the kinematic condition, and maintain physically consistent behaviour 
near the interface with a grid-scale smoothness.  

(a) rigid volume fraction (b) gas volume fraction
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To predict oil-air-rigid motions driven by a rotating disk, we have developed a fixed-mesh 
approach and made a parallelized code based on a hybrid OpenMP-MPI programming model. In this 
paper, we present the equation set and the numerical methods. Then, we explain an experimental setup, 
and make a comparison between the experiment and the direct numerical simulation, and discuss the 
validity of the numerical method and the applicability to large-scale simulations for practical systems. 

 
 

2.  Basic equations 
Let us consider an three-dimensional incompressible domain D. It consists of liquid DL, gas DG and 
rigid DR domains. We shall restrict out attention to systems such as the rigid domain DR composed of 
a body Drot rotating at a constant angular velocity Ω (here, the z axis is taken to be identical to the 
rotation axis) and a closed casing Drest at rest. Hereafter, the suffices L, G and R denote liquid, gas, 
rigid phases, respectively, and the suffices “rot” and “rest” denote the rotating and resting portions, 
respectively. The mass conservation equation is 
 

0,  D,∇ ⋅ = ∈u x                                                           (1.1) 
 
where u is the velocity vector, which is monolithically defined over the entire domain.  

We introduce a volume fraction φk of phase k inside a computational cell. The following relation 
holds among the phases. 

 
L G R R rot rest1,   .φ φ φ φ φ φ+ + = = +                                           (1.2) 

 
The volume fractions φG, φrot and φrest obey 

 
G

G( ) 0,  
t

φ φ∂
+ ⋅∇ =

∂
u                                                     (1.3) 

rot rot rest rest( , ) ( , 0),  ( , ) ( , 0),  t t t tφ φ φ φ= = = =x X x x                           (1.4) 
 

where t is the time. The initial location X of the rotating body is  
 

( cos sin ) ( sin cos ) ,x y zx t y t x t y t z= Ω + Ω + − Ω + Ω +X e e e                      (1.5) 
 

where e denotes the unit vector, and x = ex x + ey y + ez z. On the basis of a one-fluid formulation [9] 
using a continuum surface force model [16], the momentum equation are written over the liquid and 
gas phases: 
 

G L G( ) ,  D D ,p
t

ρ γκ φ ρ∂ + ⋅∇ = −∇ + ∇ ⋅ − ∇ + ∈ ∪ ∂ 
u u u τ g x                      (1.6) 

 
where ρ (= (1−φG) ρ L + φG ρ G) is the mixture density, p is the pressure, γ is the surface tension, and g 
is the acceleration of gravity. The viscous stress tensor τ and the curvature κ of the interface are 
respectively 
 

( )T( ) ,  ,µ κ= ∇ + ∇ = ∇ ⋅τ u u n                                             (1.7) 
 

where µ (= (1−φG) µ L + φG µ G) is the mixture viscosity, and n is the unit normal vectors given by 
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The fluid momentum equation (equation (1.6)) is not applied to the rigid domain R rot restD ( D D )= ∪ . 
Instead, the velocity vector is prescribed as 
 

rot rot

rest

, D ,
 

0,  D ,
= ∈

 = ∈

u U x
u x

                                                   (1.9) 

 
where rot x yy x= − Ω + ΩU e e . Note that although the equations for the fluid and rigid motions are 
separately formulated as equations (1.6) and (1.9) for the respective domains, a discretized equation 
monolithically for both the motions is solved over the entire domain as explained in section 3. 

 
 

3.  Numerical methods 
In the direct numerical simulation, the basic equations are solved by means of finite difference method 
using a regular Cartesian mesh. We follow a conventional staggered cell arrangement. The spatial 
derivatives are approximated by the second-order central differences, except for the advection term in 
equations (1.3) and (1.4) and m in equation (1.8). 

As a solution to equation (1.3), the gas volume fraction φG (the VOF function) is advected. We 
employ the MTHINC method [12], in which a continuous sigmoid function (a hyperbolic tangent 
function) represents the interface in an algebraic form. The procedure enforces a grid-scale 
smoothness on the jump in the VOF profile across the interface, and avoids the numerical instability 
and diffusion. When updating the VOF function at a certain grid point, we refer only to the adjacent 
grid points, and need no iterative process. Thus, in view of computational efficiency, the MTHINC 
method makes it easily possible to reduce a computational-load imbalance and a data communication 
in parallel computing. Further, reconsidering the algorithm in [12], we replaced “if” statements with 
mask processings for the procedure differed by the direction normal to the interface, improving the 
vector processing efficiency.  

To evaluate the unit normal vector n, we follow the Youngs approach [11], in which m in equation 
(1.8) is evaluated at the cell apex, and then it is interpolated onto the definition point of n. As in 
equation (1.4), φrot(x, t) is determined from the initial (t = 0) distribution of φrot in a semi-Lagrangian 
manner. A bilinear interpolation is applied to computing the value at the initial location X (in equation 
(1.5)) from the surrounding grid points.  

The time-stepping algorithm to update the velocity and pressure fields at the (N+1)-th time level 
from the n-th time level is based on the SMAC method [17], which consists of unprojection and 
projection steps. From the known velocity vector uN and VOF function G

Nφ  (here, the superscript N 
stands for the N-th time level), the new VOF function 1

G
Nφ +   is identified. As in equations (1.2) and 

(1.4), 1
R ( )Nφ + x  is given by 1

rot ( )Nφ + x  and 0
rest ( )φ x , and 1

rot ( )Nφ + x  is determined by the projection to the 
initial value 0

rot ( )φ X . We employ the BDI method [15], which allows us to monolithically treat the 
liquid-gas-rigid motions (equations (1.6) and (1.9)) over the entire domain. In the unprojection step, 
together with the updated volume fractions 1

G
Nφ + , 1

rot
Nφ +  and 1

R
Nφ + , the first-order explicit and implicit 

Euler schemes are applied to finding the unprojected velocity vector u* as a solution to 
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τu U u u u g             (2.1) 

 
where ∆t denotes the time increment, and  
 

( )
1

1/2 * 1 * * T, ( ) .
2

N N
N Nρ ρρ µ

+
+ ++

= = ∇ + ∇τ u u                                       (2.2) 

 
In the projection step, the pressure and the solenoidal velocity vector at the (N+1)-th time level are 
updated as 
 

1
1 1 * R

1/2
1,   ,

N
N N N

Np p t φψ ψ
ρ

+
+ +

+

 −
= + = − ∆ ∇ 

 
u u                                    (2.3) 

 
where ψ is the incremental pressure as a solution to  
 

1 *
R
1/2

1 .
N

N t
φ ψ

ρ

+

+

  − ∇ ⋅
∇ ⋅ ∇ =   ∆  

u                                                  (2.4) 

 
For parallel computing, an OpenMP-MPI hybrid programming model is adopted. The kernel code 

is implemented into an object-oriented framework V-Sphere [18], which includes class libraries to 
facilitate the software development of MPI parallel programs. A domain decomposition is applied to 
the entire computational domain D given as a set of regularly-divided rectangular domains, that 
minimizes the computational-load imbalance. Buffer arrays for the adjacent communication are 
allocated, and the data to/from the contiguous buffer are packed/unpacked. Equations (2.1) and (2.4) 
are iteratively solved by means of four-colour SOR and BiCG methods, respectively, which are suited 
to hybrid parallel computing. 

To describe a multi-component geometry, the fixed mesh approach uses voxel data instead of 
boundary-fitted grids, and makes it easily possible to realize a massively parallel computing. As a 
preprocessing, utilizing an available software V-Xgen [19] converting from CAD data in a STL format 
into voxel data, we obtain the initial rigid volume fractions 0

rot ( )φ X  and 0
rest ( )φ X  of the rotating and 

resting portions. 
 
 

4.  Experimental setup 
Experiments of an oil-air-rigid interaction problem are conducted using a container and a rotating disk. 
The system geometry is schematically illustrated in figure 2. The apparatus consists of resting and 
rotating parts made of acrylic resin for optical measurement. The resting part is a cylindrical container 
with the diameter of 270mm and the axial length of 360mm. The rotating part is a coaxial disk with 
the diameter of 250mm connected to a shaft. The disk has six circular holes. The container is placed in 
a way such as the cylinder axis pointing to the horizontal (z) direction. As shown in the right panel of 
figure 2, the position of z = 0 is located at the left fluid boundary in contact with the wall. The y axis is 
taken to be vertically downward.  

Oil is poured into the container. The oil level in a stationary state is set to 12mm below the z axis. 
The oil-air flows are driven by the disk and shaft rotating at a angular speed Ω. The oil has the density 
of ρL = 0.89×103 kg/m3 and the viscosity of µL = 67 mPa s. The oil-air surface tension is γ = 21 mN/m. 
Since the oil viscosity is dependent sensitively upon the temperature, it is important to keep the oil 
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temperature constant. During the experiments, the oil temperature was monitored, and confirmed to be 
confined within a range between 22 and 25 (oC).  

The oil velocity field is measured by means of a Particle Image Velocimetry (PIV). The light 
source is a double pulse Nd-YAG laser (Nano-S PIV, 50mJ, 532nm, Litron Laser). A laser sheet is 
projected into the container via a cylindrical lens, and thereon time-serial images including tracer 
particles (FLUOSTAR, 15µm, Rhodamine B, EBM) are recorded using a high speed camera (CLB-
B1922M-SC000, IMPERX). The synchronization between the camera shutters and the laser pulses is 
realized using a pulse generator (Model 9614, 4ch, Quantum Composers). The two-dimensional 
velocity distribution on the cross-section is determined by the PIV processing with time. For technical 
details on the procedure for gas-liquid two-phase flows, see [20, 21].  

 

 
Figure 2. Schematic geometry of the container, the disk and the shaft 

 

5.  Results and discussion 
The numerical simulations are performed with varying the angular speed Ω. The size of the 
computational domain is Lx×Ly×Lz = 320mm×320mm×432mm, and the number of grid points is 
Nx×Ny×Nz = 320×320×432. Hence, the grid size is ∆x = 1mm. We use 128 compute nodes in the MPI 
parallel computation. 

Figure 3 visualizes typical instantaneous distributions of oil at a fully developed state for various 
angular speeds Ω. The oil in contact with the disk moves along the disk rotating in the 
counterclockwise direction. The inclination of the gas-liquid interface from the horizontal plane is 
larger with increasing Ω because of the larger driving force. At the lower Ω ( ≤ 100rpm), the interface 
shape is nearly steady due to the continued forcing introduced by the rotating disk and shaft, and 
reveals weakly wavy motion due to the temporally-periodic forcing by the holes periodically bored on 
the disk. It is because the buoyancy effect is large enough to stabilize the system.  At the higher Ω ( ≥ 
200rpm), the oil raised by the circumferential edge of the disk reaches the top region of the container, 
and falls onto the horizontal oil surface. The interface shape reveals strongly unsteady motion. It is 
because the driving effect through the viscous stress near the disk and the centrifugal force effect due 
to the circumferential motion of the oil locally surpass the buoyancy effect, and thus the system is 
destabilized.  
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Figure 3. The simulated oil distributions for various angular speeds Ω 

 
Figure 4 shows the velocity distributions of the oil on the cross-section z = 27mm at the angular 

speed of Ω = 50rpm. The left panel (figure 4(a)) shows the measured result, while the right panel 
(figure 4(b)) the simulated one. As shown in figure 4, the oil globally moves in the clockwise direction, 
which is opposite to that of the rotating disk. The three-dimensionality in the complicated flow 
structure is reflected on the difference in the flow direction. The local flow direction and magnitude 
predicted by the present fixed-mesh approach are in good agreement with those by the PIV. Figure 5 
shows the velocity distribution at the angular speed of Ω = 50rpm (the same as figure 4), but the cross-
section is on z ≈ 110mm. In figure 5(a) for the PIV measurement, the red region in the colour map 
indicates the jetting flow from the shaft, and the surrounding blue region the entrained flow. The 
present numerical approach (figure 5(b)) well reproduces such a complicated flow pattern 
quantitatively.  

 
Figure 4. The time-averaged distribution of the velocity vector on the cross-section of z = 27mm at the 
angular speed of Ω = 50rpm. The colour map represents the magnitude of the x velocity component u.  

(a) 50rpm (b) 100rpm

(c) 200rpm (d) 300rpm

rotating disk

-

-

-

(a) measured
(b) simulated
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Figure 5. The same as figure 4 but the cross-section of z ≈ 110mm. 

 
At the higher angular speed of Ω = 300rpm, at which the oil motion is strongly unsteady (see figure 

3(d)), figure 6 shows the velocity distributions on the cross-section of z = 27mm. Unlike the nearly 
steady case (Ω = 50rpm, figure 4), the discrepancy between the measured and simulated distributions 
is clearly recognized. To resolve this problem, further joint research combining numerics and 
experiment is needed in consideration of the sampling time and the accuracy in the simulation and/or 
measurement. Note that the unsteady effect of the falling oil impacting on the oil surface (y = −12mm) 
may be preferentially obvious in the upper oil region, where the discrepancy is actually considerable in 
figure 6. By contrast, the lower oil region is not much affected by the unsteady effect, and therein the 
flow direction and magnitude are reasonably captured by the present simulation. 

 
Figure 6. The same as figure 4 but the angular speed of Ω = 300rpm. 

 
 

6.  Conclusion 
A numerical method based on a fixed-mesh approach has been developed to facilitate a numerical 
solution to a gas-liquid-rigid interaction problem and to realize a massively parallel computation. In 
the paper, the applicability to larger-scale simulations for practical systems was demonstrated. To 
validate the developed code, experiments and numerical simulations of oil-air flows driven by a 
rotating disk container were performed for various angular speeds Ω. Even though the agreement 

-

-

-

(a) measured
(b) simulated

-

-

-

(a) measured
(b) simulated
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became worse with increasing Ω, the present simulation could reasonably capture the velocity 
distribution experimentally obtained by the PIV. 
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