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Abstract. Turbine start-up transients are induced by the wicket gates opening sequence and 
generate high amplitude stress cycles. These stress cycles have a detrimental effect leading to 
faster crack growth in the runner blades. Using a series of direct measurements taken on a 
prototype runner in order to find the optimal start-up parameters exposes both the runner and 
the instrumentation to a series of successive damaging transient events during the optimization 
process. To solve this, finding sensors strongly correlated to strain gauges and whose signals 
can be easily obtained to identify a model to predict the strain, instead of directly measuring it, 
would reduce the risk, cost and downtime associated with a measurement campaign. This paper 
shows that turbine shaft torsion measurements is highly correlated to the strain at a runner 
blade hotspot, and we demonstrate that the ARMAX model can be used to represent the 
dynamic system in order to minimize the strain on blades. 

1.  Introduction 
Turbine start-ups generate high amplitude transient stress cycles and these transient stresses cycles 
have a detrimental effect on the structure; an effect consisting of faster crack growth in the runner 
blades. Therefore, knowing their magnitude can help the fatigue life estimation. Unfortunately, strain 
gauges instrumentation of the turbine runner blades hotspots (where maximum values are observed) is 
difficult and costly. Consequently, it is appropriate to obtain estimates of these strain amplitudes from 
indirect measurements from sensors located in easier to access location and more protected areas such 
as the main shaft or the stator structure. 

For the purpose of better understanding the relationship between start-up strategy and transient 
stress cycles amplitudes, Hydro-Quebec has carried out in situ stress measurement campaigns, on 
prototype runners. In those measurement campaigns the magnitude of the strain (near the blade welded 
joints close to the hotspot) have been measured directly on the turbine runner blade during the 
transient for different wicket gates opening patterns (Figure 1). Beside measured blade strain and the 
opening pattern, sensors were also located on the shaft to allow the calculation of the rotational speed 
and measurement of the shaft torsion (Figure 2). 
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Figure 1. Governing system control patterns for opening patterns. 

 

 
Figure 2. Typical signals of a propeller turbine for one opening sequence. 

The optimal start-up is the one that minimises the strain while assuring a reasonable 
synchronization time. So far, no attempt has been made to optimize start-ups without directly 
measuring the strain on the prototype runner blades. Thus, finding the optimal start-up pattern without 
running all the stress measurements on the prototype runner would reduce risk, cost and downtime 
associated with the measurement campaign. In order to do this, Hydro-Québec decided to use the data 
from their measurement campaigns on Francis and propeller runners to identify and validate dynamic 
models that will represent the turbines behavior and enable start-up optimization. This paper follows 
previous work conducted at Hydro-Quebec by Gagnon et al. [1-3], and by other researchers [4, 5], on 
the impact of a transient operation on Francis runners, and builds on the review on fatigue damage 
mechanisms in hydro turbines [6]. 

The case studies presented in this paper come from one (1) propeller and one (1) Francis turbine. 
After filtering the spike noise contained in the recorded signal using the 3D phase space method [7], 
the sensors strongly correlated to strain gauges were found and compared with each other. In these 
case studies, we use the torsion measurement on the shaft as input and the strain gauge on the runner 
as output to identify an ARMAX model which appears to best represent the dynamic system. The 
ARMAX Model Structure is an Autoregressive Moving Average model with external input. It 
provides a description of a stationary stochastic process in terms of three polynomials, one for the 
auto-regression, one for the moving average and the last for the external input [8]. The model’s output 
(predicted signal) is then compared to the measured signal from the strain gauge. For further validation 
purposes, a comparison is also done between the predicted signals and the measured signals from the 
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other start-ups. Depending on the model order and the start-up scheme, only the models whose 
calculated root mean square error (RMS error) is less than 30 microstrains (uS) were retained. At that 
point, we demonstrate that instead of measuring the strain during every start-up, once a consistent and 
accurate dynamic model has been identified, one can predict the strain on the turbine and use those 
predicted signals to find the optimal start-up. 

The paper is structured as follows. First, we present the statistical methods and the 
identification/validation procedures. Then, the results of the linear regression and the 
identification/validation procedure are shown. Next, to show the dependency of the identified model 
on the used start-up and the order of polynomials, case studies were developed. Finally, we conclude 
on some discussions and recommendations regarding future work. 

2.  Proposed methodology 
In this study, we used signals from in situ experimental strain measurements on prototype runners. The 
data acquisition that led to the presented results was carried out in Hydro-Québec’s run-of-the-river 
power plant. The strain on the blades was recorded using strain gauges located across the blade-to-
crown and the blade-to-band joints where the deformations are at a maximum. The strain on the shaft 
was recorded using multiple strain gauge rosettes. Depending on the strain gauges used, we can obtain 
the torque, the flexion, and the axial thrust of the shaft. 

The inspection of signals showed the presence of spike noise that did not describe the dynamic 
behavior of the structure and its interaction with the fluid. These spikes are mostly due to electrical 
phenomena and are not useful for identification. The first step was to remove this noise from the 
original signal. To remove the noise, we used the three-dimensional 3D phase space method [7]. 

Since our goal was to build a model which is meant to be a true representation of the system, we 
first, studied the relationship between the signal from the strain gauge and the components 
surrounding the runner. Since the shaft is directly connected to the runner, the second step was to find 
the link between the signals from the sensors on the shaft and the strain gauge on the blade and the 
nature of that correlation. In order to have a quick view on that relationship, we completed a series of 
linear regressions analysis between the strain gauge and every single combination of sensor on the 
shaft.. Figure 3 below presents the followed methodology. 

 

 
Figure 3. Plotting procedure for the regression analysis. 

After finding the existence of a linear relation between the two measured signals, the third step was 
to find a family of linear models that could use the linear relation to predict one of the signals while 
knowing the other; Figure 4 presents the followed algorithm. Our choice was made on a model set 
from the autoregressive polynomial family. In order to choose the best model set and then choose the 
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best model in that set, a comparison was done between ARX, ARIX, ARMAX and ARIMAX model. 
For each model, several orders were tested. The use of the root mean square error as a metric of 
comparison helped us find the best models depending on the start-up used to fit the model and the 
order of polynomials. The procedure is illustrated in Figure 4. 

 

 
Figure 4. Identification, simulation and validation procedure. 

The identification procedure consisted of identifying the parameters of a model knowing the input 
and the output of the system. In this study, we used the maximum likelihood estimator (eq. 1) to 
determine the vector of parameters θ  of the autoregressive polynomial model. To assess the adequacy 
of models and choose the best one, we calculated the root mean square (RMS) error (eq. 2). 

    * *arg max ;ˆ N N
ML yy f yθ θ  (1) 

In which: 

ˆ
MLθ  is the vector of predicted parameters using the maximum likelihood method 
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y  is the measured output from the strain gauge 
ŷ  is the predicted output from the ARMAX model 
n  is the number of samples of the output vectors 
 

After the selection of the model structure, the identification gave us the best possible representation 
for the chosen structure. The generated model can be seen as the best possible in the set, but to be 
validated, this model needed to be able to reach our objective. The objective being to optimize the 
strains on a blade, the model should provide at least the static strain in steady state and have a RMS 
error level less than 30 uS. 

After identifying, simulating and validating the model, the upcoming and last step was to use the 
model to predict signals and test if they could be used for the start-ups optimization procedure. To do 
this, the peak levels of the signals were used. The test procedure consisted of calculating, for each 
start-up and combination of measured and predicted signals, the ratio between the peak stress level of 
transients and those of the steady state. Using this ratio for the measured signals on the x axis, and 
predicted signal on the other axis, each start-up was represented by a coordinate. The optimal start-up 
being the one where the peak stress level of transient and the one of the steady state, give a ratio near 
one 1ir  . An area named the optimal zone surrounding the coordinate point (1,1) has been 
established. The area was chosen in order to tolerate a 5% error around the optimal point on each axis. 
The ideal results is obtained if for each start-up, the ratio of the predicted signal is identical to the one 
of the measured signal; which would, by plotting the regression line, show a slope of 45˚. Otherwise, 
the regression should go through the optimal zone. Figure 5 shows the optimization applicability test 
procedure used where Transientσ  and  Steady stateσ  represent the maximum stresses during transient and 
steady state, respectively. 

 

 
Figure 5. Procedure of the optimization applicability test. 

3.  Results 
Notice that the relationships between main shaft sensors and the runner could also have been explored 
in the frequency domain if nothing was found in the time domain. In our case, we were able to find 
linear correlations in the time domain. During the measurement campaign, different wicked gates 
control patterns were tested and each one was replicated at least twice. For each of the start-ups, the 
maximum value was used for the response signal of the strain gauge on the runner blade and for the 
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sensors on the shaft. Figure 6 shows the plot of the Torsion, the Axial Thrust and the Flexion of the 
shaft, successively, as a function of the strain on the blade. 

 

 

Figure 6. Torsion, Axial Thrust and Flexion as a function of the Opening. 

In our case studies, for the seven (7) wicket gate opening patterns, we investigated the torsion signal 
which appears to be most correlated to the strain gauge on the blade and the ARMAX model with 
polynomial orders one (1) to ten (10). The metric for the model comparison was the root mean square 
(RMS) error; the best models being the ones minimising it. 

3.1.  Case study #1: Propeller turbine 
For ARMAX models with polynomials of order two (2), Figure 7 presents a comparison of the 
measured and predicted signals for high and low quality models using the 15%-30% and the 40% 
start-ups. 

 
High quality model’s output Low quality model’s output 

  

Figure 7. Propeller Turbine’s measured and predicted signals for ARMAX models. 
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An important step is testing if the predicted signals can be used to do a start-up optimization. In Figure 
8 and 9, we observe that; for measured and predicted signals, if the model is of high quality, the ratio 
between the strain level during transient and the level during steady state intersect within the optimal 
zone for the optimal start-up found experimentally. However, if the model is a low quality one, the 
ratios will never intersect in the optimal zone, and then, those models cannot be used for optimization 
purposes. 

 

 

 
Figure 8. Propeller turbine high quality models’ optimization test results. 

 

 
Figure 9. Propeller turbine low quality models’ optimization test results. 

3.2.  Case study #2: Francis turbine 
The application of this methodology is not limited to propeller turbines and produces results just as 
satisfactory on Francis turbines. For ARMAX models with polynomials of order two (2), Figure 10 
presents a comparison of the measured and the predicted signals for high quality models for the 30% 
and the 20% start-ups. 
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Figure 10. The Francis turbine’s measured and predicted signals. 

 

4.  Discussion 
At this point, we can say that using autoregressive polynomial models to predict strain on blades can 
be an alternative to minimize the number of direct measurements needed. Nevertheless, it is difficult 
to select autoregressive polynomial models parameters depending on the consistency and the accuracy 
of the predicted signal. A categorization needs to be done among the order of polynomials according 
to the wicket gates opening pattern. Table 1 presents the models’ RMS error for the seven (7) start-ups 
and orders of polynomials from one (1) to ten (10). 

Table 1. ARMAX model RMS error as a function of the start-up and the order of polynomials 
for 1st validation. 

Wicket gate opening 

  MODE A MODE B 

 [20%] [25%] [30%] [35%] [40%] [15%-30%] [15%-40%] 

O
rd

er
 o

f P
ol

yn
om

ia
ls 

[1] 42.2 47.7 54.7 57.8 69.4 44.4 54.8 

[2] 23.4 23.3 23.1 25.1 29.6 21.5 19.4 

[3] 38.2 107.6 136.9 357.8 27.2 21.4 74.1 

[4] 37.1 40.3 166.3 179.8 27.3 21.4 163.9 

[5] 27.5 134.4 23.1 388.9 38.4 106.3 244.6 

[6] 57.7 21.3 22.9 25.1 27.3 131.7 19.3 

[7] 21.7 22.2 136.2 274.9 27.3 21.9 407.7 

[8] 126.6 22.2 23.3 26.8 27.2 128.2 19.3 

[9] 26.1 22.2 127.6 264.7 27.1 147.2 19.3 

[10] 22.6 121.1 131.5 25.1 182.3 122.8 169.6 
 

ARMAX model with a RMS error less (<) than 30 uS 
ARMAX model with a RMS error greater (>) than 30 uS 
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Looking at Table 1, we observe that no matter the start-up pattern, a model of order one (1) cannot 
be used to predict the strain. Due to the fact that the model is built to include, at each point, the 
previous one, in the vector of observation, it does not seem enough to extract all the information 
contained in the vector of observation. Another observation is that a model of order two (2) can be 
used to predict the signal of any start-up satisfactorily. We also observed that many models with a 
RMS error below 22 uS are obtained using a complex wicket gates control pattern. The 15%-30% 
start-up gives around 21 uS RMS error and the 15%-40% start-up gives less than 20 uS. Another 
observation is that the 40% opening, which was the maximum opening during the measurement 
campaign, gives a relatively good constancy compared to the other start-ups with a RMS error around 
27 uS. Building on the last three observations, we can say that the start-ups which solicit the structure 
the most (40% standard opening, 15%-30% complex opening, 15%-40% complex opening) gave the 
best quality, or the best constancy, in model estimation. 

5.  Conclusions 
From the results presented in this study, we have confirmed the following: 

 The stresses on the shaft are significantly correlated to the stresses on the runner blades. 
 An autoregressive polynomial model (ARMAX) identified using a carefully chosen start-up 

and with suitable order can be used as a consistent and accurate representation of the system 
for optimization. 

 The more solicited is the structure from the wicket gate opening pattern, the more easy is to fit 
the model and obtain lower RMS error. 

 All the models with satisfying results for the first validation give satisfying results for the 
second one. 

More specific to the data, it is a prudent to detect and filter the spike noise due to the fact that this 
increases the fidelity with which we are able the fit a model to represent the system. At this stage in 
our study, the model identified is specific to a given runner design. As for the models’ output, even 
though the static level of the stress is quite well predicted, the expected range for the dynamic 
behavior is less accurate which reduces the fidelity of the results. 

Future research should investigate the use of multiple inputs and outputs to obtain more accurate 
models. Moreover, other models families are available like state space and distributed parameters 
models which could increase the conformity between the predicted signal and the measured signal. 
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