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Abstract. In a hydroelectric turbine, the air injected during operation has an impact on the
yield of the machine leading to important losses of energy. To understand those losses and
be able to reduce them, a first step is to understand the pattern of the two-phase flows and
describe their characteristics in the turbine. Those two-phase flows can be bubbly, intermittent,
or annular, with different types of intermittent flow possible. Two-phase flow patterns are well
defined in classical geometries such as cylinders with reliable descriptions available [5]. But,
there is a critical lack of knowledge for flow patterns in other geometries. In our present work
we take interest into a geometry that is a pipe with periodical changes of the section and realize
a flow pattern map. To realize this map, we measure the pressure variations and void fraction
fluctuations while changing the flow rates of water and air in our test section. We then use our
physical understanding of the phenomena to analyze data and identify different flow patterns,
characterize them, and build a new flow pattern map.

1. Introduction
Increasing the yield of hydroelectric turbines is a key issue especially in Quebec, where 97% of
the electricity is hydroelectric. The air injected during operation decreases turbine’s efficiency
and also results in pressure fluctuations that can affect the turbine’s lifespan. Hence the yield
can be improved through a better understanding of the two phase flow behavior over the turbine
when air is injected. Beyond this importance for hydroelectric turbines, the understanding of
two phase flow is essential for numerous processes in the petroleum, chemical and nuclear realms.
Indeed two phase flows can generate important forces on structures, which can lead to dramatic
consequences as in the San Onofre nuclear plant accident [2].
Two phase flows were first studied in cylindrical pipes, as it is the most current geometry, and
different flow patterns identified. Depending on the two fluids flow rates, their characteristics,
and the diameter of the pipe, the patterns differ. From a pure flow of air, when the liquid flow
rate is increased, the flow goes from “annular” (a), with a liquid film along the side wall and
drops entrained in the gas flow to “churn” (b) with chaotic structures and oscillatory motions,
then to “slug” (c) with bullet shaped structures of gas in water, and finally to “bubbly” (d)
with bubbles in a continuum of water, as shown on Fig. 1. In the case of a jet of air in water,
the flow will necessarily go through these patterns since pure air is injected, and far from the
injection bubbles are present. [3]
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Figure 1: Flow pattern in vertical upward flow in cylinders.[4].

The flow pattern maps in cylinders are well documented and results are reliable [5–7]. The
classical map by Taitel et. al (1980) is shown in Fig. 2a for a diameter of 3 cm. However, for
other geometries, much work remains to be done. The most studied non cylindrical geometry is
a tube bundle which represents the upper part of nuclear steam generators. In this geometry,
it is more difficult to identify differences between flow patterns and usually only three patterns
are defined: bubbly, intermittent, and annular. Intermittent patterns regroup slug and churn
flows. After the first map based on visual observations [8], only few groups used objective pa-
rameters to segregate the different patterns. Noghrehkar et al. (1999) [1] relied on void fraction
measurements. They analyzed, as explained below, the probability density function (PDF) of
the void fraction for each experimental condition, and used it to sort out flow patterns. Ulbrich
and Mewes [9] measured and analyzed pressure fluctuations to identify the different flow pat-
terns. Their criterion is based on the fact that the intermittent flow is characterized by pressure
fluctuations. Those two studies give very different results as one can see on Fig. 2b.
In the following work we present both pressure fluctuations and void fraction variations to char-
acterize flow patterns and create a more detailed flow pattern map. Visual observations are
often difficult, since we can’t see what is happening inside the bundle. The geometry we study
here is meant to represent the typical configuration for a nuclear plant steam generator, but the
methodology we use can be applied to all geometries.

2. Experimental setup
Tests are carried out in a two meters long test section shown on Fig. 3. The geometry aims at
representing the upper part of a steam generator. In this part two phase flow goes through a
perpendicular tube bundle. For practical reasons experiments have been handled in a part of
the tube bundle, with half tubes instead of a full tube bundle. The diameter of our tubes is
D = 38 mm which is about twice as much as the diameters used in the industry. This choice
was made so that we have room to insert an optical probe. More information about the test
section is available in Mureithi and Masabarakiza (2011) [10].

A custom-made optical probe gives local information about the nature of the fluid at a
frequency of 50 000 Hz. Optical probes work with the following principle: a laser beam goes
into an optical fiber in the probe installed in the flow. As optical index of water is higher
than optical index of air, the beam will be mostly reflected when the fiber is in air, and will
mostly exit when it is in water. The returning signal is analyzed and gives information on the
local structures. Measurements are done only in one location in the center of the flow. More
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(a) Flow pattern map in a 3 cm diameter pipe. (b) Flow pattern map realized by Noghrehkar et. al
(1999) in a bundle with tubes diameter of 1.27 cm, with
the borders from Ulbrich and Mewes (1994) in doted
line in a bundle with tubes diameter of 2.00 cm.

Figure 2

information is available on optical probes in the literature [11, 12]. Pressure measurements have
been sampled at a frequency of 1000 Hz, at three locations in the experimental setup. Locations
2 and 3 are used to measure pressure fluctuations. Entrance pressure measurement is only meant
to give a better estimate of the pressure drop. Water and gas are injected at the bottom of the
test section. Water flows in the experimental setup in a closed loop, thanks to a gear pump
previously calibrated. Gas comes from the “Polytechnique Montréal” pressurized air circuit.
Air flow rate is measured by means of an orifice plate.

3. Notations
In our experimental setup we vary the water and air volumetric flow rate, Ql and Qg. In addition
to those two parameters we define:

• P the pitch length,

• D the diameter,

• L = 10 cm the depth of the test section,

• (P −D)L the typical area of the test section [11],

• β the volumetric quality with β =
Qg

Qg +Ql
,

• jg the gas superficial velocity jg =
Qg

(P −D)L
= βU ,

• jl the liquid superficial velocity jl =
Ql

(P −D)L
= (1 − β)U ,

• U the homogeneous velocity with U = jg + jl.

Superficial velocities are velocities each flow would have if it were the only fluid. The
homogeneous velocity is the velocity the flow would have if both fluids had the same velocity.
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Figure 3: Mock up of the experimental setup.

4. Post-processing
To efficiently sort out patterns, pressure Fourier transform and void fraction probability density
function (PDF) were extracted.

4.1. Probability density function of void fraction
χg is the indicator function with χg=1 if the probe is in gas and χg=0 if it is in liquid. Void
indicator function is measured locally at a 50 KHz frequency. To create the PDF one has to
calculate the mean void fraction measured during a time Ts called sampling time. Void fraction
is defined as:

ε(t) =
1

TS

∫ t+Ts
2

t−Ts
2

χg(τ) dτ (1)

Those mean void fractions allow to calculate the probability density function defined as:

P (a ≤ ε ≤ b) =

∫ b

a
PDF (ε) dε (2)

Where a and b are two values of ε. One example of PDF is plotted on Fig. 4a, for which
there is a probability of 0.14 that the void fraction be between ε = 99% and ε = 100% during
a sampling time. This sampling time is important since two PDFs of the same signal χg(t)
with different sampling times will be different. The sampling length is calculated based on
the sampling time and the homogeneous velocity U. It is the length of flow analyzed that goes
across the probe during the sampling time. This sampling length Ls allows the experimentalist
to adjust to two phase flow structures. For example if the sampling length is 1 mm, a peak at a
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void fraction ε = 0% allows to conclude that the flow carries water structures larger than 1 mm.
Since the sampling length depends on the velocity, the number of measurement points during
this length will decrease as the velocity increases. The void fraction precision will be adapted
consequently.
An issue with the methodology used by Noghrehkar et al. is that they calculate their PDF with
a fixed sampling time. The consequence is that the sampling length they use depends on the
velocity, resulting in a bias in their analysis. For example when they are supposed to study
annular flows, their sampling length is Ls = 4 cm which is higher than any interesting structure.
This sampling length only results in giving the averaged void fraction in the flow.

4.2. Pressure Fourier transform
The pressure Fourier transform is calculated using several Hanning windows of 12 seconds with
a 75% overlap. The Fourier transform is calculated on a total duration of 60 seconds. A typical
example is shown on Fig. 7 for which important fluctuations of pressure around 5Hz can be
observed.
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(a) Example of PDF with β=80%, U=0.9m/s and a
sampling length Ls=1,9cm.
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(b) Example of Fourier transform with β=96%,
U=6, 9m/s .

Figure 4: Example of PDF and Fourier transform.

5. Flow pattern characteristics
The analysis of pressure and void fraction fluctuations lead to the identification of four flow
patterns called annular, churn, slug and bubbly. Two subcategories of churn flows are also
defined: churn-1 and churn-2. The intermittent flow is defined by the occurence of large
structures of both water and air, and large pressure fluctuations. When no pressure fluctuations
were discernible, but big structures of both gas and air were present, the intermittent pattern
was considered in a slug flow pattern. When pressure fluctuations were detectable in addition,
the intermittent pattern was considered in a churn flow pattern.

5.1. Annular flow
The two criteria used to define the annular flow rest upon the absence of pressure fluctuations [9]
and the absence of water structures larger than 1 mm, which is about the maximum size of drops
in annular flow [13]. The optical probe is really fragile, which prevented its use with the high gas
flow rate required to observe annular flow. Thus it was only used to confirm that the flow was
not annular, hence to show the occurrence of annular flow we relied on pressure measurements.
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We decided to classify as flat profile any pressure Fourier transform with a maximum of less
than 0.2 psi. An example of this nearly flat profile can be seen on Fig. 5, and indeed fluctuations
are still visible, but is not considered as two phase flow effect.
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Figure 5: Fourier transform with β=98% and U=14, 4m/s.

5.2. Churn
Churn flow is defined by the presence of large structures of both water and air, and of
pressure oscillations. We observed different kinds of pressure fluctuations depending on the flow
parameters. For several conditions two low frequency components are detected around 0.6 Hz
and 2.5 Hz. For other conditions a high frequency component is detected around 7 Hz. We then
decided to separate the intermittent churn pattern in two different flow patterns: churn-1 and
churn-2. All churn void fraction PDF exhibit large structures of both air and water.

5.2.1. Churn-1 The churn-1 flow pattern is defined by important low frequency oscillations. As
explained above [4], those pressure fluctuations are a signal of churn flow occurrence. A typical
pressure Fourier transform of churn-1 can be observed on Fig. 6a, and a typical void fraction
PDF of churn-1 on Fig. 7a. Frequencies of peaks are at 0.6 Hz and 2.5 Hz and do not depend
on velocities or void fraction. The sampling length for both churn PDFs was set to 1 mm, since
the goal is to verify that we have water structures larger than 1 mm, indicating structures larger
than drops.

5.2.2. Churn-2 In the churn-2 flow pattern, low frequency pressure oscillations are no longer
observable, while high frequency pressure fluctuations are. A typical Fourier transform of churn-
2 is plotted on Fig. 6b, and a typical PDF of churn-2 on Fig. 7b. The frequency of this peak
linearly depends on homogeneous velocity U which allows to define a Strouhal number.

5.3. Slug flow
Slug flow pattern is characterized by large bullet shaped structures of gas. These structures are
usually larger than the pipe diameter in length. Given our geometry, void fraction PDF is based
on a sampling length of 1.9 cm, the minimal width of the flow path. A typical void fraction PDF
with a peak showing the presence of those structures is shown on Fig. 8a. This pattern also
requires water structures larger than drops, larger than 1 mm. The PDF with a sampling length
of 1 mm must then exhibit a peak at ε=0% to show that there are water structures larger than
1 mm. A typical example of the PDF with this sampling length is shown on Fig. 8b. However,
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(a) Churn-1 Fourier transform with β=95%, U=8.6m/s
.
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(b) Churn-2 Fourier transform with β=96%, U=6.9m/s
.

Figure 6: Typical Fourier transform for churn-1 and churn-2.
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(a) Example of churn-1 PDF with β=95%, U=4.5m/s,
and Ls=1mm .
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(b) Example of churn-2 PDF with β=95%, U=6.3m/s,
and Ls=1mm .

Figure 7: Typical PDFs for churn-1 and churn-2.

no pressure oscillations can be detected for this flow pattern which indicates the flow is of slug
type.

5.4. Bubbly flow
The Fourier transform is nearly flat for bubbly flows. A bubbly flow is defined by contrast with
slug flow. It is a flow pattern whose void fraction PDF exhibits no peak at ε=100% with a
sampling length of 1.9 cm. A typical PDF of bubbly flow is plotted on Fig. 9a, and a typical
Fourier transform on Fig. 9b.

6. Flow pattern map
Now that we characterized the various flow patterns we can define flow patterns areas on the
map.
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(a) PDF with β=80%, U=0.20m/s and Ls=1.9cm.
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(b) PDF with β=80%, U=0.8m/s and Ls=1mm.

Figure 8: Typical PDFs for slug flow with different sampling lengths.
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(a) Example of bubbly PDF with β=10%, U=0.6m/s
and Ls=1.9cm.
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(b) Example of bubbly Fourier transform with β=60%
and U=1.0m/s.

Figure 9: Typical PDF and Fourier transform for bubbly flow.

6.1. Borders obtained through the pressure analysis
The contour of maximum of Fourier transform peaks for both low frequency and high frequency
oscillations is plotted on Fig. 10a. The threshold allowing to determine that a point is churn is
set to 0.2 psi. We see two different zones of important pressure fluctuations that correspond to
churn-1 and churn-2 areas.

6.2. Borders obtained through PDF analysis
Here we segregate cases between having air structures larger than 1.9 cm, and bubbly flow. The
flow is of slug pattern when at leat 10 % of air is flowing as stuctures bigger than 1.9 cm. The
resulting map is plotted in Fig. 10b

6.3. Comparison with existing maps
The different flow patterns and sample points determined in this study are compared with those
in tube bundle from Noghrehkar et al. and from Ulbrich and Mewes on Fig. 11a. Additionally we
compare our data to those of Taitel et al. in a different geometry that is a vertical cylindrical pipe
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Figure 10

on Fig. 11b. With low fluid velocity, similar boundaries to those defined by Ulbrich and Mewes
are obtained, even if we segregate different types of intermittent flow. However very different
results for water velocities larger than 0.4 m/s are obtained. When they see only bubbly flow,
we notice important pressure fluctuations, and large gas structures. Bubbly flow is obtained
in the same range as Noghrehkar et al., but the beginning of the annular flow is obtained for
much higher gas velocities in our work. The beginning of the annular flow for them matches
with the beginning of our pressure oscillations. As we explained earlier the methodology used
by Noghrehkar et al. is not pertinent with annular flows, which explains the difference between
our flow pattern map and their flow pattern map. Finally Taitel et al. predict a beginning of
annular flow consistent with our data, but we have really different results in terms of slug and
churn flows. It is not surprising since annular flow occurs when gas can carry the weight of drops.
Hence the geometry should not matter a lot for the transition with annular flow. Transition
from bubbly flow to intermitent flow is observed by Taitel et al. at lower gas flow rates than
we do. The bundle is responsible for this effect since it prevents large gas structures, allowing
bubbly flow at higher gas rates. Since we have tubes with larger diameters than Ulbrich and
Mewes and Noghrehkar et al., our present results look closer to those obtained in a pipe.

7. Conclusion
In this work new information has been brought on the flow pattern map and more precise
information on the flow characteristics of each flow pattern has been produced. In particular
pressure fluctuations due to two phase flow were identified. As exiting from a nozzle, the flow
pattern is certainly close to an annular flow, we might expect pressure fluctuations. Indeed, as
gas expands and finishes in a bubbly flow, churn flow is expected to happen in between. Further
work in a more open geometry is necessary to conclude, and the methodology with the use of
both an optical probe and a pressure probe will be appropriate. We also exhibited a default
concerning the sampling time used in the PDF by Noghrehkar et al., and proposed a better
definition based on the physical understanding of two phase flows.
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Figure 11: Comparison of our results with the literature
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