
 
 
 
 
 
 

Experimental and Numerical Analysis of Performance 

Discontinuity of a Pump-Turbine under Pumping Mode 

X. Zhanga, R. Burgstallerb, X. Laia, A. Gehrerb, A. Kefalasb and Y. Panga 

a School of Energy and Power Engineering, Xihua University, No.999, Jinzhou RD, 
610039 Chengdu, China 
b Andritz Hydro, Andritzer Reichsstrasse 68b, 8045 Graz, Austria 
 

zhangxiang@mail.xhu.edu.cn 

Abstract. The performance d iscontinuity of a pump-turbine under pumping mode is harmfu l to 

stable operation of units in hydropower station. In this paper, the performance discontinuity 

phenomenon of the pump-turbine was studied by means of experiment and numerical 

simulation. In the experiment, characteristics of the pump-turbine with different diffuser vane 

openings were tested in order to investigate the effect of pumping casing to the performance 

discontinuity. While other effects such as flow separation and rotating stall are known to have 

an effect on the d iscontinuity, the present studied test cases show that prerotation is the 

dominating effect for the instability, positions of the positive slope of characteristics are almost 

the same in different diffuser vane opening conditions. The impeller has principal effect to the 

performance discontinuity. In the numerical simulation, CFD analysis of tested pump-turbine 

has been done with k-ω and SST turbulence model. It is found that the position of performance 

curve discontinuity corresponds to flow recirculation at impeller inlet. Flow recircu lation at 

impeller in let is the cause of the discontinuity of characteristics curve. It is also fo und that the 

operating condition of occurrence of flow recirculation at impeller inlet is misestimated with k-

ω and SST turbulence model. Furthermore, the original SST model has been modified. We 

predict the occurrence position of flow recirculation at impeller in let correctly with the 

modified SST turbulence model, and it also can improve the prediction accuracy of the pump -

turbine performance at the same time. 

1.  Introduction 
Poor flow conditions such as rotating stall, back flow, flow recirculation and the like happened in the 
flow channel of the pump cause the positive slope of characteristics and lead to the instability of the 
whole system. Instability characteristics always fascinate researchers and engineers for a long time. A 
lot of research results have been achieved in respects of the cause of formation, mechanism, 
phenomenon, control method of instability characteristics. These results expand the operating range of 
pump and optimize the operating quality of pump. The unstable feature of pump characteristics results 
from the unstable complex flow accompanied by the backflow in the pump channel. The internal flow 
field of pump changes drastically when the pump operates in the condition which represents the 
positive slope of characteristics. It results in: 1) instability of system[1]; 2) break or sudden change of 
head, efficiency and power[2]; 3) worse pressure pulsation[3]; 4) greater risk of cavitation[4]. 
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Current studies indicate the main reason of the unstable characteristics is that the rotating stall 
located impeller and diffuser, changing of velocity distribution at impeller outlet, backflow between 
impeller and pumping casing[5, 6, 7, 8]. 

As research continues, a more serious kind of positive slope characteristics went into our eyes. It is 
called the discontinuity characteristics. It is also manifested as hysteresis loop in pump characteristics. 
Kaupert K.A. did the first analysis of the hysteresis phenomenon of pump[2], but similar researches in 
the field of pump-turbine gave rise to more concerns[9]. Following the research method and idea of 
normal pump, researches on instability characteristics of pump-turbine had been done. The result is 
similar to former research on normal pump, that is the saddle characteristics results from backflow 
between impeller and diffuser[10]. 

As research method and technology improves, it is gradually found that not only rotating stall near 
impeller outlet and diffuser inlet but also recirculation at impeller inlet exist when the pump runs in 
the condition of performance discontinuity. Kaupert K.A.[11] found that the recirculation at impeller 
inlet was a strong stable flow structure in term of the experiment when performance discontinuity 
happened. Milan Sedlár[12] indicated that performance discontinuity is linked with impeller inlet 
recirculation by means of researches on the cavitation structure and its dynamics, NPSH 
characteristics of a high efficiency mixed-flow pump. More and more evidences demonstrated that the 
recirculation at impeller inlet has great effect on performance discontinuity. 

This article focused on a pump-turbine model. Performance discontinuity of pump-turbine under 
pumping mode has been studied by means of experiment and numerical calculation. 

2.  Pump-Turbine Model 

The specific speed ns is 150 (
3/4

3.65
s

n Q
n

H
  ). The model is vertical single stage and single suction. 

This hydraulics is of a storage pump, thus has a shaft through the draft tube and can also operate in 
turbine mode. The number of impeller blades is 9, the rotating speed at test rig is 1200 RPM. The 
pumping casing is diffuser with volute. The principle meridional sketch drawing is shown below. 

 
Figure 1. Meridional sketch drawing 

3.  Experimental Facility 
Experiments were performed in ASTRÖ which is a hydraulic lab of ANDRITZ AG. The test stand is 
closed-loop arrangement. Its sketch picture is shown below. Its average error of efficiency is 0.25%, 
repeatability near optimum is equal or greater than ±0.1%. 
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Figure 2. Sketch of test stand 

4.  Experiment and Results Discussions 
A set of characteristics had been achieved in a series of diffuser vane openings. Flowrate-Head curves 
are shown in Fig. 3. Definitions of dimensionless coefficients are determined as follow: 

Head coefficient: 
2 2

2

2gH

U
         (1) 

Where H is the head of pump-turbine model, U2 is the circumferential speed at impeller outlet. 

Flowrate coefficient: 2
2

2

mv

U
         (2) 

Where 
2mv  is the meridional velocity at impeller outlet. 

 
Figure 3. Flowrate-Head curves 

Flowrate-head curves in conditions of 10 diffuser vane openings are presented in Fig. 3. They show 
that flowrate-head curves of model are the first-order derivative discontinuity, there are two cuspidal 
points in each curve. It means that a sudden change exits in f lowrate-head curve. The head raises up 
abruptly as the flowrate is increasing. 10 flowrate-head curves with 10 diffuser vane openings are 
showed in Fig. 3 together. It is clearly presented that flowrates of performance discontinuity points are 
almost the same even if heads with different diffuser vane openings have great difference. In different 
diffuser vane openings, not only blade angels at diffuser vane inlet are difference but also areas of 
cross section of diffuser passage changes. Namely there are some different pumping casing if diffuser 
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vane openings are different. So the result of experiment illustrated that the performance discontinuity 
is independent of pumping casing, the impeller is the main role of discontinuity. 

In the experiment we observed a phenomenon via transparent inlet section. When the flowrate was 
less than that of discontinuity point there was obvious inlet recirculation accompanied by loud noise 
and strong vibration. When the flowrate was more than that of discontinuity point the in let 
recirculation disappeared, levels of noise and vibration get low. 

The rotating stall which is originated from impeller and diffuser are normally considered as the 
reason of performance instability. But the onset of this kind of rotating stall is closely related to the 
geometry of diffuser such as occurred operating condition of rotating stall depends on the diffuser 
vane opening[13]. Moreover, the head drops relatively slowly if it is induced by the rotating stall, but in 
the present experiment heads changed rapidly i.e. breaking, it is so different from head changing 
situation in the rotating stall. 

According to the analysis of characteristics and visual observation at inlet section, we found that 
the onset of inlet recirculation coincides with the performance discontinuity point. It is concluded 
presumably that the inlet recirculation has an important influence on performance discontinuity. 

5.  CFD Calculation and Discussions 
In order to predict the onset flowrate of performance discontinuity and improve model design before 
model test, we need to do numerical simulation of internal flow field of model based on CFD method. 

As we know from the result of the above section the performance discontinuity is independent of 
pumping casing. In the research result of Kaupert K.A.[2] it is said that the outlet reverse flow and any 
volute tongue flow interaction are not a necessary condition for the ψ-discontinuity. Thus the present 
paper paid attention to the impeller. Moreover, F. Ginter[15] indicated the flow instability being entirely 
impeller induced since that the measured impeller characteristics and that of the entire pump showed a 
performance discontinuity of nearly identical magnitude, located at the identical flowrate. In numerical 

studies of Masamichi Iino[14]，Kaupert K. A.[2]，F. Ginter[15] they showed that onset operating 
conditions of the performance discontinuity are the same when they were calculated in alone impeller 
or entire pump. The steady numerical simulation which is done in single impeller channel can also get 
an ideal result. 

Authors had made a comparison of an impeller model without diffuser and the same model with 
diffuser, and found that impeller characteristics obtained by the model without diffuser compared with 
the model with diffuser are considered to be identical. Based on the above results, the incompressible 
steady flow simulation in a single impeller channel is carried out with the commercial CFD-code 
ANSYS CFX. The simulation domain is presented below. 

 
Figure 4. Simulation domain 

28th IAHR symposium on Hydraulic Machinery and Systems (IAHR2016) IOP Publishing
IOP Conf. Series: Earth and Environmental Science 49 (2016) 042003 doi:10.1088/1755-1315/49/4/042003

4



 
 
 
 
 
 

The mass flow rate was given at inlet, flow direction is normal to inlet. The average static pressure 
is 0Pa at outlet. Periodic boundary conditions are shown in Fig.4. The entire calculation domain is 
rotating, the option of Alternate Rotation Model is enable.  

Since the changing direction of flowrate is from small to large in the test, the larger flowrate 
calculation was performed by using the data previously calculated as the initial condition. Repeating 
this way, the flow fields were calculated at each flowrates. 

The computational mesh is hexahedral structure grid. Three sets of meshes were used to check 
sensitivity of mesh. The number of cells are 302.2 thousand, 403.4 thousand and 806.8 thousand 
respectively. The same computational strategy were used, model characteristics and the length of inlet 
recirculation are almost the same. Considering the value of y+ and the computational expense, the 
mesh with 403.4 thousand cells is the final choose. The average value of y+ at blade surfaces is 11.87 
in the design condition using SST turbulence model. F. Ginter[15] also refer to a more complex model, 
resolving the boundary-layer and simulating the unsteady interaction between impeller and volute, 
would include no additional information about the basic mechanism of the performance discontinuity, 
but only increase the computational time drastically. Fig.5 shows the computational mesh. 

 
Figure 5. Computational mesh 

The k-ω turbulence model and the SST turbulence model were used to close N-S equation 
respectively. The calculated Φ-ψ curves are presented below. 

 
Figure 6. Φ-ψ curves 

In Fig. 6 the solid line represents the test result at the design diffuser vane opening, the dash line is 
the result calculated using the k-ω turbulence model, the dot line is the result calculated using the SST 
turbulence model. Since the computational domain contains just the impeller, both of heads obtained 
by the k-ω model and the SST model are higher than the test result, and the head is better matched if 
the CFD model includes the diffuser vanes. We can find easily that both the k-ω turbulence model and 
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the SST turbulence model fail to predict the correct onset positon of the performance discontinuity. 
The k-ω turbulence model overestimates the onset of the inlet recirculation, the calculated position of 
the performance discontinuity is on the left of the test position. The SST turbulence model 
underestimates the onset of the inlet recirculation, the calculated position of the performance 
discontinuity is on the right of the test position. Referring to the results of this paper’s references 
(mostly using the k-ε turbulence model), the calculated positions of the performance discontinuity are 
always on the left of their test results. Generally the SST turbulence model is better than the k-ε and 
the k-ω turbulence model, but it also predicts the onset position of the performance discontinuity 
incorrectly. Furthermore, authors have done this kind of calculation on other pumps and pump-
turbines, there are no exception that the onset position calculated using the k-ω turbulence model is on 
the left of the test result, the onset position calculated using the SST turbulence model is on the right 
of the test result. 

Situations of the inlet recirculation are shown in Fig.7~8. Flowrates of operating conditions 
referred to Fig.7~8 are listed in Table 1. 

Table 1 Position of operating conditions (Φ2) 

Turbulence Model Lower Branch Lower Turning Point Upper Turning Point Upper Branch 
k-omega 0.089 0.111 0.120 0.142 

SST 0.111 0.142 0.146 0.164 

 
 

(a) Lower Branch    (b) Lower Turning Point 

 
 

(a) Upper Turning Point    (b) Upper Branch 
Figure 7. Results of the k-ω turbulence model 

 
 

(a) Lower Branch    (b) Lower Turning Point 

 
 

(a) Upper Turning Point    (b) Upper Branch 
Figure 8. Results of the SST turbulence model 
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In above pictures the absolute velocity streamlines are shown on the left side, the axial velocity 
contour is shown on the right side (the scale was adjusted for easy observation, the maximum velocity 
is set to 0 m/s). It can be found from pictures that the length of inlet recirculation is shorting while the 
flowrate is increasing, the length is almost 0 near the lower turning point, and there is no inlet 
recirculation from the upper turning point. It can be concluded that the inlet recirculation corresponds 
to the performance discontinuity directly. 

The existing two-equation turbulence models cannot predict the onset of the performance 
discontinuity correctly according to references and authors’ practice. Based on the above result, the 
essential issue is that the inlet recirculation cannot be calculated correctly by the existing two-equation 
turbulence models. If the more advanced turbulence model is used, we cannot afford the higher cost of 
the computation in the engineering application. And we had tried to use Reynolds stress model (steady 
and unsteady state), two-equation turbulence models with unsteady state as well, the results were also 
unsatisfied, the onset of the performance discontinuity wasn’t predict correctly. In order to solve the 
problem of how to forecast the onset of discontinuity, the SST turbulence model is analysed. 

The SST turbulence model combines the advantages of the k-ε and the k-ω turbulence model, and 
accounts for the transport of the turbulence shear stress. It gives highly accurate predictions of the 
onset and the amount of flow separation under adverse pressure gradients. Both the k-ε and the k-ω 
turbulence model do not account for the transport of the turbulent shear stress, thus they over predict 
the eddy-viscosity. The essential idea of the SST model is modifying the definition of the eddy-
viscosity for adverse pressure gradient boundary-layer flow in much the same way as the Johnson-
King model does[16]. Hence the SST model gives a new definition of the eddy-viscosity: 

 
 

1

1 2max ,
t

a k

a SF





  (1) 

Where F2 is a blending function, which limits the modification to boundary-layer flows, i.e., in the 
boundary-layer the definition of the eddy-viscosity is: 

 1

2

t

a k

SF


   (2) 

In other domain the definition of the eddy-viscosity is: 

 
t

k



  (3) 

The middle span section of the impeller model is shown in Fig. 9. In the picture it only has two 
colours, the red part represents the eddy-viscosity was calculated by equation (3), and the blue part 
represents the eddy-viscosity was calculated by equation (2). The computational condition is Φ2=0.164, 
the SST model used. 

 
Figure 9. Distribution of the eddy-viscosity definitions 

Fig.9 illustrates that the default blending function of the SST model does not succeed to limit 
equation (2) to boundary-layer flows. The equation (2) was still used in the core flow domain to 
calculate the eddy-viscosity, but Bradshaw’s assumption doesn’t necessarily hold in free shear-layer. 
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Thus the default blending function of the SST model isn’t always suitable to the internal flow 
computation of the hydraulic machinery. But we noted that the effect of the blending function F1 of 
the SST model is limiting the k-ω turbulence model to boundary-layer flows, and the effect of the 
blending function F2 of the SST model is limiting the equation (2) to boundary-layer flows. Just 
because the modification to the eddy-viscosity has its largest impact in the wake region of the 
boundary layer, it is imperative that F2 extends further out into the boundary-layer than F1

[16]. But F2 
was applied in the situation of the external flow originally, we don’t know if it works well in the 
internal flow. Fig. 10 exhibits the distribution of F1 and F2 in the middle span section of the impeller. 

 
(a) Blending Function F1  (b) Blending Function F2 

Figure 10. Distribution of F1 and F2 
It can be found that the effective area of F1 is limited to the boundary layer, and that of F2 extends 

to the core of flow channels. We can know from Fig. 9 that the extension of F2 resulted in the equation 
(2) activation in a large part of the core flow domain. It is unreasonable. So we used F1 instead of F2, 
i.e.: 

 
 

1

1 1max ,
t

a k

a SF





  (4) 

The distribution of the eddy-viscosity definitions in the middle span section of the impeller is 
shown in Fig. 11. The computational condition is Φ2=0.155, the modified SST model used. 

 
Figure 11. Distribution of the eddy-viscosity definitions 

The red part represents the eddy-viscosity was calculated by equation (3) as well. The modified 
SST model control the distribution of the eddy-viscosity definitions well. 

The Φ-ψ curve calculated by the modified SST model is shown in Fig. 12. 
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Figure 12. Φ-ψ curves 

Fig.12 shows the results obtained from the modified SST model in comparison to the previous 
results. It is clearly presented that the ability to predict the onset of the performance discontinuity is 
improved using the modified SST model. We used the modified SST model to calculate other cases in 
order to predict the onset of performance discontinuity, and the modified SST model also works better 
than the k-ω model and the SST model. So this model gave us another method to predict the 
performance discontinuity correctly without increasing computational cost. 

6.  CONCLUSIONS 
The present paper analyzed the phenomenon of performance discontinuity of a pump-turbine model 
under pumping mode by means of experiment and numerical simulation. Main conclusions are: 

(1) The performance discontinuity point corresponds to the onset of inlet recirculation of impeller 
and the length of inlet recirculation decreases while the flowrate of operating condition increases. 

(2) Pumping casing has little impact to the performance discontinuity, the impeller is the main 
driver. 

(3) The modified SST model improves the ability to predict the onset of performance discontinuity 
of a pump-turbine. 
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