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Abstract. The correlation of precipitation anomalies over Eurasia with atmospheric blocking 

events was examined with ERA Interim reanalysis data. We found that, regardless of the 

frequency of the atmospheric blocking events, they significantly affect the distribution of 

rainfall over all Eurasian regions in summer, due to both the change in the westerly transport 

and the dominant dipole blocking structure. It is important that, depending on the blocking 

positions in Asia, there are heavy rainfalls in an arid zone which includes Kazakhstan, 

Mongolia, Northern China, and the Trans-Baikal Territory. 

1. Introduction

Atmospheric blocking is a major large-scale phenomenon in the circulation of mid- and high-latitude 

atmosphere [1,2]. The mid-latitude westerly jet and the eastward progression of synoptic systems are 

often interrupted in long periods of atmospheric blocking. Thus, atmospheric blocking can 

significantly impact weather processes. The lifetime of blocking varies from a few days to a few 

weeks, and, therefore, they may be responsible for various extreme weather events. Blocking events 

(BEs) are normally associated with extreme summer droughts and snowless winter periods. In 

addition, they can cause heavy atmospheric precipitation, especially in summer. 

The blocking formation processes and the associated weather anomalies over some areas of the 

Northern hemisphere have been studied in detail since the 1940s - 1950s. It has been found that 

strengthening of large-scale Rossby waves leads to the formation of a monopole Ω-blocking (a hot 

ridge in the center, cold troughs near the base) or to a dipole Rex-blocking (a closed cyclone from the 

equatorial side and a closed anticyclone from the polar side of the mean westerlies) [2]. Jet streams 

and the associated baroclinic disturbances are forced to bypass the blockings. Both factors, i.e. the 

change in the direction of motion of the synoptic disturbances and the descending and ascending flows 

in the blockings themselves, lead to the formation of both negative and positive atmospheric 

precipitation anomalies in the  vicinity of the blockings. These anomalies are clearly visible on 

monthly average precipitation maps [3]. For instance, in the summer of 2003, a long-lasting blocking 

over Western Europe resulted in heavy rains in Eastern Europe. Also, in July 2010 a blocking over 

ENVIROMIS-2016 IOP Publishing
IOP Conf. Series: Earth and Environmental Science 48 (2016) 012035 doi:10.1088/1755-1315/48/1/012035

Content from this work may be used under the terms of the Creative Commons Attribution 3.0 licence. Any further distribution
of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI.

Published under licence by IOP Publishing Ltd 1



 

 

 

 

 

 

Eastern Europe caused precipitation in Western Siberia. Besides, the significant meridional sizes of 

the blockings enables them to impact regions not only in the mid-latitudes but also those farther to the 

south [4,5]. 

The rainfall anomalies generated by blockings have been studied for some regions in Europe [6] 

and Asia [4]. In the present paper we analyze the impact of blocking processes on the atmospheric 

precipitation anomalies over the entire territory of Eurasia. 

2.  Method and data 

In order to detect the blocking events, we used the Tibaldi and Molteni (ТМ) criterion [7], which is 

based on the estimation of the meridional gradient of the geopotential height at 500 hPa. This criterion 

allows us to detect blockings for a given longitude (equations (1) and (2)):  

     
           

     
 (1)      

           

     
 (2) 

where Z is the geopotential height at 500 hPa, φn=80
o
N±Δ, φ0=60

o
N±Δ, φs=40

o
 N±Δ, Δ=-4°,0° or 4°. 

The given longitude is then defined as "blocked" at some time if the following conditions are 

satisfied for at least one value of Δ: GHGS>0, GHGN < -10 m/deg lat. 

To study the relationship between BEs and precipitation distributions, some local blocking estimates 

were used [2,8]. A blocking event was registered if the TM blocking condition was met at least for one 

day at some longitude. Some calculations of the TM criterion were performed using the ERA Interim 

data [9] from 1979 to 2015. 

Figure 1 shows a time-longitude cross-section distribution of the blocking frequency (BF) over 

Eurasia in July obtained using the TM criterion. The July intensity of summertime blocking over Asia 

is most frequently at its maximum. 

 

 

Figure 1. Time-longitude cross-section of BF (N) in July. 

Normally, three blocking regions are distinguished over Eurasia [4]: 0-50E (E: Europe), 50-80E 

(US: Ural-Siberia) and 120-160E (ОS: Okhotsk Sea). For these regions, the authors of [4] have 

investigated some characteristics of summertime blockings. For the OS and E regions, the correlations 

of blockings with atmospheric precipitation have also been studied [4,6]. The region from 80E to 

120E, which has low BF, has been studied in much less detail. However, one can see that periods of 

high BF are observed even in this region (figure 1). That is why we investigated blockings in the 

region of 80E-120E (ES: East Siberia) too. 

First we calculated the integral BF for each of the four regions, and then, the correlation 

coefficients between these four values and the total precipitation at a regular grid of the entire 

Northern hemisphere for each summer month. 
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3.  Results 

Figure 2 shows distributions of calculated correlation coefficients for various Eurasian regions. 

Positive and negative anomalies of precipitation (AP) caused by the structural features of blockings 

are more or less typical for all the regions. Dipole AP configurations are described in [6] for Europe 

and in [4] for the Okhotsk Sea region. In Europe, during the periods of blocking much precipitation 

falls in the south (figures 2a,c,e). During blockings in the Okhotsk Sea region, the atmospheric fronts 

in Japan and Korea are strengthened (figures 2h,j,l). Besides, during blocking periods in the Far East, a 

lot of precipitation falls over the Trans-Baikal Territory (figures 2h,j). 

For the Siberian region, the correlation between blockings and precipitation anomalies has not been 

studied earlier, but a close examination of figure 2 shows that the impact of blockings on APs is as 

profound (figures 2g,I,k) as it is in the Ural-Siberian region (figures 2b,d,f). Due to the blocking 

process, the large-scale quadrupole anomaly structure in Eastern Siberia is even more evident than that 

in Europe; although the BF in Europe is much higher than that in Eastern Siberia [4]. In the course of 

blocking, much precipitation falls in the arid Mongolia which, basically, is anomalous. Thus, despite 

their low frequency, the blockings in Eastern Siberia play an important role in the region. Overall, it 

should be noted that the blockings in each region of Asia are accompanied by precipitation in the arid 

belt of Asia (Kazakhstan, Mongolia, Transbaikalia, and North China). 
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Figure 2. Distribution of correlations between BF and total precipitation for Europe (a-June, c-

July, e-August), Ural-Siberia (b-June, d-July, f-August), Eastern Siberia (g-June, i-July, k-August), 

Okhotsk Sea (h-June, j-July, l-August). 

All blockings in Eurasia are accompanied by positive precipitation anomalies at their north-western 

boundaries. These anomalies result from changes in the trajectories of baroclinic disturbances. The 

effect of this factor is evident in the case of East-Siberian blockings. 

It is clearly seen that the northward shift of the cyclone series reduces precipitation in the southern 

regions of Europe. During blockings over Europe, much precipitation falls in Siberia due to the 

increased intensity of ultrapolar cold air intrusions. In the Far East region, special attention should be 

paid to the formation of positive precipitation anomalies northwards of the blocking anticyclone. 

Despite the similarity of the correlation fields for specific regions in different summer months, 

there are some differences. These are not so evident over the entire Eurasia, but for some countries and 

regions they may play an essential role. For example, in August the negative anomalies resulting from 
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a blocking anticyclone over Europe (figure 2e) are especially well-pronounced in the Volga region. 

When a blocking occurs in Eastern Siberia, the Central Asian republics (Kazakhstan, Uzbekistan and 

Turkmenistan) are areas of negative or positive anomalies in some months. For example, when a 

blocking takes place in July (figure 2i) a precipitation shortage is clearly seen, and, on the contrary, 

when a blocking takes place in August (figure 2k), positive precipitation anomalies prevail. Our main 

attention is focused on the arid and semiarid regions of Asia, because it was noted [10] that in the 

course of climatic changes of the recent decades the droughts of the arid and semiarid regions of Asia 

are among the most dramatic ones globally. Some changes in the atmospheric blocking may be one of 

the reasons of this phenomenon. 

4.  Conclusions 

Atmospheric blockings can be responsible for both negative and positive atmospheric precipitation 

anomalies. It has been found that, regardless of frequency, atmospheric blockings have a pronounced 

effect on the distribution of atmospheric precipitation throughout all regions of Eurasia. The formation 

of positive and negative precipitation anomalies is associated both with changes in the trajectories of 

jet streams and with the dipole structure of blockings in summer. It is of special importance that the 

blockings in all regions of Asia are accompanied by large precipitation in an arid belt zone that 

includes Kazakhstan, Mongolia, North China, and the Trans-Baikal Territory. 
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