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Abstract. In modern smart green buildings, sensors can detect various physical status of a 

building such as temperature, humidity, motion, and light, which can be used for smart living 

services. This paper presents an energy-efficient vertical transportation by making use of 

indoor sensor technologies. Specifically, sensors detect elevator users before they push the call 

button, and then inform to the elevator control system through building networks. By using this 

information, our system generates a reservation call and controls the moving time and direction 
of each elevator efficiently. Simulation experiments with a variety of traffic situations show 

that our elevator control system exhibits significantly better performance than the conventional 

system that does not use sensor information with respect to passengers’ waiting time and 

energy consumption. 

1.  Introduction 

Due to the recent advances in indoor sensor technologies, various smart living services in a modern 
green building are being realized. For example, indoor sensors can collect temperature, humidity, 
motion, light, and sound, which might be used for energy saving, comfort, healthcare, and security [1].  

HVAC (Heating, Ventilating, and Air Conditioning) is a representative system that can utilize indoor 
sensor technologies. HVAC controls the air condition and the temperature of a building according to 
the weather and the existence of human beings, thereby leading to an energy-efficient building 
infrastructure.  

Vertical transportation is another important service that can be involved in indoor sensor 
technologies in a smart green building. There is a report that HVAC and vertical transportation are the 
two major complaints of building tenants [2]. To alleviate this situation, this paper presents a novel 
elevator control system that utilizes indoor sensor technologies. As human behaviors and movements 

can be detected precisely with current sensor technologies such as video, audio, optical, and floor 
sensors [1], [3], [4], [5], an elevator control system can recognize the arrival of users before they push 
the actual call buttons. Thus, our system exploits this information for enhancing the efficiency of 
elevator control, leading to reduced waiting time and energy consumption. Although a lot of studies on 
vertical transportation have been performed, utilizing indoor sensor technologies for elevator control is 
in its infancy.  
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The goal of elevator control systems is usually mentioned as the minimization of waiting time, 

riding time, and the energy consumption of the systems. Previous works have mostly focused on the 
minimization of the average waiting time as passenger’s dissatisfaction grows significantly as the 
waiting time becomes long [7]. This paper focuses on the minimization of both energy consumption 
and passenger’s waiting time.  

Elevator control is a complex optimization problem due to the complicated elevator dynamics, 
uncertainty of traffic patterns, and multiple goals to be considered concurrently. Due to this reason, 
previous works utilize well-known optimization techniques like fuzzy logics and genetic algorithms 

[8], [9], [10], [11], [21]. Also, some facilities such as cameras and additional buttons are adopted to 
collect more information on waiting passengers [10]. Some research predicts traffic patterns using 
peak time distribution analysis [9]. However, prediction and adaptation used in existing research is 
limited as elevator control systems recognize passengers’ arrival only after they push the elevator call 
buttons. Unlike previous works, the proposed elevator control system collects passenger information 
by sensor technologies before they actually arrive, which will be utilized in efficient elevator control. 
Specifically, our system generates a reservation call for candidate passengers detected by sensors and 

controls the moving direction and the moving time of elevators efficiently. To validate the efficiency 
of the proposed elevator control system, we perform simulations with a variety of traffic conditions. 
Our experimental results depict that the proposed elevator control system performs significantly better 
than the legacy system that does not use sensor information with respect to the average waiting time, 
the worst case waiting time, and the energy consumption. In particular, the improvement of the 
average waiting time and the energy consumption is in the range of 15-30% and 28-31%, respectively. 

The remainder of this paper is organized as follows. Section 2 discusses previous studies on sensor 
technologies for smart green building environments. Section 3 describes the proposed elevator control 

system in detail. Section 4 validates the proposed system through simulation experiments. Finally, 
Section 5 concludes this paper. 

2.  Sensor technologies for smart green buildings 

Recently, smart green building prototypes are developed that contain various indoor sensors such as 

video sensors, floor sensors, and battery-backed wireless sensors. We can collect a lot of context 
information from these sensors, which might be exploited for smart green building services. Kidd et al. 
present a context-aware home prototype [3]. It consists of several living spaces such as bedroom, 
bathroom, living room, dining room, and office, and video sensors are installed in each space for 
tracing human movements. With this information, human behaviors can be analyzed and predicted. 
Figure 1.(a) shows a person tracked by the video sensor in this prototype building. 

Orr and Abowd present a smart floor for tracking human movements and identities [4]. They 
created a system for identifying users by making use of their footstep force profile. This also allows 

               
 

Figure 1. (a) Video sensors                                     Figure 1. (b) Floor sensors 

Figure 1. User tracking systems with various sensor technologies [3, 4, 5]. 
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the tracking and the prediction of tenants in a smart building. Addlesee et al. present an active floor, 
which is similar to the smart floor [5]. The active floor is the square grid of conventional tiles that is 
supported at the corners by cylindrical load cells, which send weight changes of about 50 grams to the 
location system. With this information, the system can predict the future locations of people. Similarly, 

Steinhage and Lauterbach present capacitive sensor arrays which are embedded in floor carpets in 
order to track the movement across a large area [14]. Figure 1. (b) shows these floor sensors. Want et 
al. present the active badge system for tracking people in an office building [13]. In their system, 
people wear an active badge, and it periodically delivers signals, which are used to trace the location 
of people.  

Sensor networks have also been widely studied for smart green building infrastructure. Gao et al. 
propose an intelligent light control system based on wireless sensor networks [19]. Their system 
reduces the energy consumption of a smart green building significantly. Eliades et al. present the 

sensor placement problem in smart buildings in order to monitor and protect indoor air quality against 
contaminations [20]. They formulate the problem as a multi-objective optimization problem to save 
the sensor cost as well as the impact of contamination events. Sreedharan et al. design a real-time 
sensor system that combines information from multiple sensors to accurately detect a sudden release 
of toxic contaminants in a smart building [21].  

Smart parking providers also make use of sensor technologies to monitor the real-time availability 
of parking spaces [15]. Finding the best path to an exit with sensor networks is also attempted [16]. 

Brunette et al. develop wireless sensor nodes that can provide contextual information including human 
activity, environment, and RFID tags, which can be used in ubiquitous computing applications to 
automatically adjust their behavior according to the situation [18].  

Sensor information in a smart green building can also be used efficiently in vertical transportation 
systems. Strang and Bauer use RFID tags to inform the destination floor before passengers enter the 
elevator car [17]. Kwon et al. also use context information by using floor sensors, but their scheduling 
is not applicable to group elevator systems [6]. Mitsubishi Electric Corporation developed an RFID-

enabled elevator system [12]. The RFID tag informs the arrival of passengers and their destination, 
which are used for the elevator control and security. By combining RFID and cameras, their system 
discerns if a person wants to use an elevator or is just walking near an elevator [12]. 

3.  Energy-efficient elevator control with sensors 

Legacy elevator control systems cannot recognize passengers before they actually push the elevator 

request buttons. Thus, waiting time and energy consumption are increased significantly. Take, for 
example, a typical situation where a passenger pushes a request button at the 1st floor right after the 
elevator goes from the 1st up to the highest floor. Then, the passenger should wait during a full round 
trip time of the elevator, and the energy consumption of the elevator is also increased because of the 
long moving distance.  

To address this issue, we present a novel elevator control system called ESG (Elevator control for 
Smart Green buildings). ESG obtains passengers’ arrival information in advance from multiple sensors 
and exploits the information to control elevator systems. As mentioned in Section 2, with the rapid 

advances in sensor and wireless network technologies, there is no difficulty in detecting and 
transferring the passenger information in advance. Given information on subsequent passengers 
beforehand, ESG controls elevators more efficiently with respect to the waiting time and energy 
consumption.  

Now, let us see the details of ESG. Figure 2 shows the overall architecture of ESG; it is composed 
of three subsystems, namely the Control Subsystem (CS), the Reservation Subsystem (RS), and the 
Assignment Subsystem (AS). CS controls the moving or stopping of the elevator. RS collects and 

processes passengers’ arrival information detected by sensors. When a passenger approaches the 
elevator, multiple sensors detect the passenger’s location in advance, and then inform this information 
to the elevator control system through building networks. RS calculates the time when the passenger 
will arrive at the elevator and then generates a reservation call accordingly. AS receives the 
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reservation call from RS, and decides two parameters; DT (delay time) and MD (moving direction). 
DT is the time interval that should be delayed before the elevator begins its movement for the 
reservation call, and MD is the moving direction, i.e., upward or downward, of the elevator. If a 
reservation call arrives during the idle time of the elevator car, the car does not move immediately at 
right, but delays its movement as long as it can reach the requested location before the passenger 
arrives there. Determining DT is important to reduce the moving distance of the car, potentially related 

to the energy consumption, since other requests towards the same direction during the delayed time 
can arrive. We define DT as the time difference between the passenger’s moving time to the elevator 
door (denoted by PT) and the elevator car’s moving time to the reserved floor. In particular, the 
elevator car’s moving time depends on the distance of the movement. If the distance is longer than a 
certain threshold (denoted by MIN), a uniform motion interval exists in the middle of the moving. 
Otherwise, the car moves only as acceleration and deceleration motions. Equation (1) represents how 
DT is calculated.  

 

                              
ASC

DIST
PT 2                  if  DIST < MIN 

DT =                                                                                                                   (1) 













 


USC

MINDIST

ASC

MIN
PT 2   otherwise 

   
PT = AHT – RCT  

DIST =  CE – PFi   FH  
 

 

where CE is the current floor of the elevator, PFi is the current floor of the passenger i, FH is the 
height of a floor, DIST is the distance between the elevator’s and the passenger i’s floors, MIN is the 
minimum distance for uniform motion, ASC is the uniform acceleration of the car, USC is the uniform 
velocity of the car, AHT is the actual call time, and RCT is the reservation call time. By expression (1), 
delay time of an elevator car before starting its movement can be calculated.   

  

Figure 2. Basic architecture of the proposed elevator control system. 
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Now, we will explain our scheduling system by describing the workings of the algorithm with 
appropriate examples. Figure 3 depicts a simple situation to show the effectiveness of delayed 
movement. Suppose that two passengers P1 and P2 want to ride the elevator. P1 is at the 18th floor 
and aims at going down to the 1st floor. P2 is at the 6th floor and aims at going up to the 18th floor. In 

this simple example, we suppose the logical time that is increased by one whenever an elevator goes 
up or down for a floor and ignore all other time components like boarding time. We suppose that 
sensors detect passengers 30 time units before they arrive at the elevator door. Thus, P1 and P2 make 
actual calls at t31 and t37, but their reservation calls are generated at t1 and t7, respectively. When we do 
not apply the delayed movement, the car starts moving at t1 towards the 18th floor to pick up P1. 
Although P2 makes a reservation at t7, the car already passed by the 6th floor at that time. As a result, 
the wait time of P2 becomes longer, and also the elevator consumes additional energy because of the 
increased moving distance. In contrast, if we adopt delayed movement, the elevator delays its 

movement for 13 time units, and then starts moving at t14; thus, P2 can take the elevator at this turn. 
Accordingly, the total execution time of the elevator system is reduced, which also leads to significant 
energy-savings. 

MD (moving direction) is another critical parameter for the waiting time and the energy 
consumption. Figure 4 shows an example situation of MD’s effects. Suppose that reservation calls for 
passengers P1 and P2 are issued at t1 and t6, from the 12th and 6th floors, respectively, and the 
passengers will actually arrive in front of the elevator door 30 time units later; the elevator car initially 

stops at the 8th floor and the destination of P1 and P2 are the 15th and 18th floors, respectively. Then, 
in the legacy elevator control system, the car first goes up to the 12th floor at t31 to pick up P1. P1 
rides the car at t35, and arrives at the destination floor at t38. Then, the car goes down to the 6th floor to 
pick up P2. In this way, the waiting time of P2 becomes 11 time units. In contrast, in our system, the 
car first goes down to the 6th floor to pick up P2, and then goes up to the 12th floor to pick up P1. 
Accordingly, the waiting time of the passengers and the moving distance of the elevator are 
significantly reduced.  

Now, we will describe how the aforementioned algorithm can be applied in group elevator control 
systems. The operation of ESG for group elevator systems is composed of two phases: the allocation 
phase and the processing phase. When a reservation call is issued, the elevator control system first 
decides which elevator should be allocated to that request. For efficient allocation, ESG calculates the 
passengers’ expected waiting time for each car. Then ESG allocates the car incurring the minimum 
expected waiting time to that request. The expected waiting time (PWT) of elevator car x from the i-th 
to the j-th floor is calculated as 
 

PWT (x, i, j) = TMOVE + TADDITIONAL 

 

ASC

DIST
2                              if DIST < MIN 

TMOVE  =                                                                                             (2) 

USC

MINDIST

ASC

MIN 
2       otherwise 

 
TADDITIONAL = TOPEN + TBOARDING + TCLOSE 

 

 
where DIST is the distance between the passenger and the car, MIN is the minimum distance for 

uniform motion, ASC is the uniform acceleration of the car, and USC is the uniform velocity of the car. 
TOPEN, TBOARDING, and TCLOSE are the time to open the elevator door, the time to board the elevator, and 
the time to close the elevator door, respectively. If the car needs to visit some additional floor during 
the movement from i to j, multiple TMOVE and TADDITIONAL are added to PWT. 
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After the allocation phase is completed, ESG inserts the passenger’s reservation call into the 
request queue of the selected car. ESG, then, processes the passenger’s reservation call based on the 

original ESG algorithm.  

 

Figure 3. A simple situation that contrasts non-delayed and delayed movements. 
 

 

 

Figure 4. A simple situation of adopting Moving Direction (MD) in the proposed system. 
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4.  Experimental results  

To validate the effectiveness of multiple sensor devices in detecting passenger information, we 
equipped RFID, video, and floor sensors in a twenty-story building for residence, and collected sensed 
data for enrolled users. The building authenticates the enrolled users at the gate of the underground 
parking area or the main entrance of the ground floor using an RFID tag or a password. We first 

collect sensor data at this time to make a reservation call. Less than 120 seconds are needed for a 
candidate passenger to move from this location to the elevator door. Along the hallway towards the 
elevator, floor sensors are located, and they can detect the moving direction of people through the path 
of the step. This information is collected about 60 seconds prior to the actual call at the elevator. Video 
sensors are also located at the ceiling of the hallway, and they can also recognize the movement of 
people. The distance from this location to the elevator is about 30 seconds or less. We set the default 
moving direction of reservation calls to “up” at the parking area and the ground floor. Note that a 
reservation call is dropped from the request queue when it is not continued to appear in the subsequent 

sensors. For example, when a reservation call is generated 120 seconds prior to the actual call through 
RFID tags but there is no corresponding reservation call through video or floor sensor, the request is 
dropped from the scheduling queue.  

In the residence area ranging from the 2nd to 20th floors, each home has its front door and there are 
floor sensors along the hallway. 60 seconds or so are needed to move from the front door to the 
elevator including the locking time of the door. Video sensors are also located at the ceiling of the 
hallway, and the distance to the elevator is about 30 seconds or less. We set the default moving 

direction of reservation calls to “down” at residence floors. Figure 5 depicts our experimental 
environments of sensing systems. 

We perform simulation experiments to evaluate the efficiency of ESG. We use similar conditions 
with previous works [8], [10]. The number of floors and elevators is set to 20 and 6, respectively, and 
each elevator car can accommodate 20 people. The passengers’ traffic is generated by Poisson process 
with the average arrival rate ranging from 5 to 35 passengers/min as usual [8], [10]. To reflect the 
peak-time traffic in real situations, we also generate passengers’ traffic by a non-homogeneous 

Poisson process where the arrival rate itself changes according to another Poisson process. We 
compare ESG with CS (current system) that does not use reservation calls. We use three criteria: 
waiting time (average case), waiting time (worst case), and energy consumption. 

According to the aforementioned prototype sensor settings, we perform three ESG configurations: 
ESG-30, ESG-60, and ESG-120. In ESG-30, the reservation call is generated 30 seconds prior to the 
passenger’s actual call. Similarly, ESG-60 and ESG-120 generate reservation calls 60 and 120 seconds 

 

Figure 5. Prototype configurations to collect sensor data. 
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prior to actual calls, respectively. In reality, the optimum time period for the reservation call should be 

defined empirically depending on passengers’ and elevators’ moving time and the location of sensors. 
An elevator’s moving time can be estimated precisely by the law of motion as in Equation (1), but a 
passenger’s moving time varies depending on the location of sensors and each passenger’s step. If we 
overestimate the passenger’s moving time, the passenger should wait long for the elevator car. If we 
underestimate the passenger’s moving time, the elevator car may arrive before the passenger arrives. 
As a closer sensor estimates the moving time of the candidate passenger more precisely, in our 
empirical study, a reservation call from a distant sensor is dropped from the request queue when it 

appears from a closer sensor. 
Location of sensors is also important to determine the time period for reservation calls. A distant 

sensor provides the control system with passengers’ information earlier and thus using this 
information allows the elevator car to pick up many passengers at a time. This eventually leads to the 
reduction of energy consumption. In contrast, a close sensor provides more accurate information, and 
thus the waiting time of passengers can be minimized. For now, we show the results for a spectrum of 
policies by utilizing multiple sensors and do not provide the tuning issue of the optimal time period.  

Figure 6. (a) shows the average waiting time of CS and ESG as the arrival rate is varied. As 

depicted in the figure, ESG exhibits consistently better performance than CS irrespective of the arrival 
rate. Specifically, the average waiting time of ESG-30 is better than CS by 22% on average and up to 

  

(a) waiting time – average case 

   

(b) Energy consumption 

Figure 6. Comparison of the current system (CS) and the elevator control for smart green 

buildings (ESG). 
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30%. The performance enhancement of ESG-120 is relatively small as many passengers ride the 
elevator at a time. Figure 6(b) depicts the amount of energy consumed while operating the elevator 
system. ESG again exhibits better performance than CS. Among the three configurations, ESG-120 
performs the best as more people can ride the car at a single round trip time compared to other elevator 
control systems. The gain of ESG-120 over CS is 28.6% on average and up to 31.2% with respect to 
the energy consumption. 

 Figure 7 depicts the results for non-homogeneous traffic patterns. Again, ESG performs better than 
CS for all performance measures. As shown in Figure 7(a), ESG-30 exhibits 16.1% better performance 
than CS with respect to the waiting time of average case. Similar to the results in Figure 6, the 
performance enhancement of ESG-120 is not large with respect to the waiting time of average case. 
However, this is not the case for the waiting time of the worst case as shown in Figure 7(b). 
Irrespective of ESG configurations, the improvement of the worst case waiting time is in the range of 
6.5-6.8%. Figure 7(c) depicts the energy consumption of the elevator system. Similar to the 

homogeneous traffic cases, ESG-120 performs the best; the improvement is 30.7% compared to CS in 
terms of the energy consumption. 

5.  Conclusion 

This paper presented a novel elevator control system, called ESG, for smart green buildings. ESG uses 
multiple sensor devices to collect passengers’ arrival information before they arrive at the elevator. 

Specifically, three types of sensor devices, RFID, video, and floor sensors are used to estimate 
passenger information precisely. By utilizing this prior information, ESG controls the elevator system 
more efficiently than legacy elevator control systems. We generate a reservation call for candidate 
passengers detected by sensors and control the moving direction and the moving time of elevator cars 
for the reservation calls. Experimental results with various traffic conditions showed that ESG reduces 
the average waiting time and the energy consumption by 15-30% and 28-31%, respectively, compared 
to legacy elevator systems. As a future work, we plan to extend ESG to collect the destination floor of 

passengers in advance by using a variety of sensors including smartphone sensors. We expect that 
more complete information can be used for efficient scheduling.  
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(a) waiting time – average case  (b) waiting time – worst case   (c) Energy consumption  

Figure 7. Comparison of the current system (CS) and the elevator control for smart green 

buildings (ESG) as the traffic is non-homogeneous. 
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