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Abstract. This paper presents an active and  reactive power dynamic optimization model for 

active distribution network (ADN), whose control variables include the output of distributed 

generations (DGs), charge or discharge power of energy storage system (ESS) and reactive 

power from capacitor banks. To solve the high-dimension nonlinear optimization model, a new 

heuristic swarm intelligent method, namely wolf pack algorithm (WPA) with better global 

convergence and computational robustness, is adapted so that the network loss minimization 
can be achieved. In this paper, the IEEE33-bus system is used to show the effectiveness of 

WPA technique compared with other techniques. Numerical tests on the modified IEEE 33-bus 

system show that WPA for active and reactive multi-period optimization of ADN is exact and 

effective. 

1.  Introduction 

With increasing penetration of decentralized generation, distributed energy storage devices (ESD), 

control equipments and advanced communication networks, the distribution system is gradually 
becoming to the active one from traditionally passive network [1]. But high penetration of DGs access 
to the power grid may lead to voltage fluctuation or overvoltage, which seriously restrict the 
consumptive capacity of ADN for renewable energy generations (RESs). Therefore, it is necessary 
that the active and reactive power of dispatchable DGs need to be optimally dispatched by distribution 
network operators (DNOs). So the active and reactive power coordinated optimization (ARPCO) has 
become a research topic. 

In the past years, many researchers have also engaged in optimal programming and operation. 
Numbers of programming methods or intelligent techniques were applied to optimize reactive power 
dispatch (OPRD). For example, particle swarm optimization (PSO) [2, 3], artificial bee colony (ABC) 
[4] and the hybrid differential evolution with ant system applied by C.-M. Huang[5] to solve OPRD. 
On the compelling problem of ADNs control, Reference [6] has proposed a new bidirectional 
converter as the interface of combined generating and electric storage systems with the grid. In 
reference [7], a broadcast-based unified control algorithm was brought forward to provide reactive 
power support for the grid by a seamless control of heterogeneous energy resources such as distributed 

storage systems and demand-responsive loads. In [8], a real-time distributed generation control 
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scheme and a real-time decentralized load control scheme have been designed for power networks 
with tap-changing transformers.  

Distribution networks are characterized by reduced line lengths with a non-negligible resistance 
over reactance (R/X) ratio, so the ARPCO of ADNs is more significant. In [9], a two-stage optimal 

schedule model for ADN has been proposed to dispatch active and reactive power of DGs. Marco 
Bronzini has presented a centralized control model for distributed resources in ADN and solved the 
problem using quasi-Newton method [10]. Levron et al. [11] presented a dynamic search algorithm 
based on a load flow for the OPF problem in microgrids with ESDs and RESs, but the method worked 
well only for systems with a small scale system. A solution for ARPCO in ADNs was explicated by 
Reference [12], but the charging and discharging periods of ESS were fixed so that the solutions were 
low-quality. In [13], a mixed-integer second-order cone programming (MISOCP) model has been 
proposed for the optimal operation problem in ADN. This method can convergence to the optimal 

value by using existing optimization software, but the solution is not accurate enough. Graditi G. [14] 
models the 24h behavior of appliances by means of a real-valued function and then extended the GSO 
algorithm to solve multi-objective energy management optimization problems for smart grids with 
direct control over shiftable loads. This method was verified comparable or even better than NSGA-II 
[15]. In [16], a comprehensive multi-objective optimal technique was proposed for optimal operation 
of ADN. The method was included the internal procedure and the external one. The former applied the 
Nondominated Sorting Genetic Algorithm II for the optimal management, and the latter was 

responsible for choosing the design features such as ratings and/or types.  
This paper proposed the ARP coordinated dynamic multi-period optimization model, and applies a 

new swarm intelligent optimization algorithm- WPA to solve ARPCO problem. WPA has been 
proposed by [17] and is especially suitable for solving high-dimension optimization problems. This 
paper is organized as follows: Section 2 discusses the ARPCO model, and section 3 briefly describes 
WPA technique. Then, WPA implementation in solving ARPCO model is explicated in section 4. 
Section 5 presents the simulation results and discussion. At last, section 6 states the conclusion of this 

paper. The main contribution of this paper includes the realistic ARPCO model considering ESDs and 
application of the WPA to solve it, whose main advantages are: 1) a realistic and precise model; 2) 
computational robustness; and 3) good convergence performance. 

2.  ARPCO Model 

The equipments such as dispatchable distributed energy resources (DER) and switchable shunt 

capacitor banks (SCB) are usually controlled for optimal operation of ADN. So the active power of 
DER and reactive power of SCB are chosen as control variables, ie, u= [PDG

t, PESS
t, QCB

t] T. 
In general, the minimum energy loss in the scheduling period is selected as the objective function 

for the optimal operation of ADN, f expressed as follow: 

2 2
LOS ( , )
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[( ) ( ) 2 cos ]
lNT

t t t t t
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t i
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Where T is the period number of a complete dispatching cycle, Nl is the number of transmission lines, 
Vt and θt , as state variables,  are respectively  the bus voltage amplitude and phase angel in the period-
t. Gi(m,n) is the conductance of the branch-i connecting node-m and node-n. 

The equality constraint equations include load flow suggested in [8] and the operation equality 
constraints of distributed generator (DG) and ESS, as follows: 

Load flow: 

PGi
t– PLi

t = Vi
t
 ΣVj

t(Gijcosθij
t + Bijsinθij

t)                                                 (2.1) 
QGi

t - QLi
t = Vi

tΣVj
t (Bijcosθij

t  - Gijsinθij
t)                                                 (2.2) 

Where PG may be the active power from DG, ESS or substation. For the ESS, its charge power is 
positive and discharge power is negative. 

Distributed generator (DG): 
QDGi

t = PDGi
t
 tanφ                                                                     (3) 
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Where PDGi , QDGi, φ are the active power , reactive power and power factor angle of DG-i respectively. 
ESS: 

Ei
t = Ei

t-1 – ΔtPESi
t-1 ,         t = 2,…,T，i = 2,…,Ns                                            (4.1) 

Ei
1 = Ei

0                                                                                                        (4.2)                                                                                                                                               
Where Ei

t
 is the remaining energy of the ESS-i in the period-t, Ns is the number of ESS. 

In addition, the inequality constraints include operation constraints of ADN, as follow:  
DG constraints:  

PDGi
min

 ≤ PDgi
t ≤PDGi

max
                                                                                                (5) 

Where PDGi
min and PDGi

max  are the upper and lower limits of active power generation respectively. 
ESS constraints: Charge or discharge power and energy are restricted by their upper and lower 

limits, as follow: 
                                                   PESj

min ≤ PESj
t ≤ PESj

max
                                                                                             (6.1) 

Ej
max × 20% ≤ Ej

t ≤Ej
max × 90%                                               (6.2) 

Where Ej
max is the max energy stored in ESS. For longer life of the ESS, the energy stored in ESS is 

generally from 20% to 90% of Ej
max in fact [13]. 

Constraints of power from substation: In order to restrain the influence of the AND power 
fluctuation on the transmission network, the constraint of power from substation is considered as 
follow: 

0 ≤ PEX
t  ≤ PEX

max
                                                                                                          (7.1) 

0 ≤ QEX 
t ≤ QEX

max
                                                                                                        (7.2) 

Shunt capacitors restricted by their limits: 
QCi

min ≤ QCi
t ≤ QCi

max
                                                                                                      (8) 

Operation safety constraint of AND: 

                                                           Vi 
min

  ≤ Vi
t ≤ Vi 

max
                                                                                                     (9.1) 

Iij
t
    ≤ Iij

max
                                                                                                                         (9.2) 

Where Vi
t  is the node-i voltage amplitude in the period-t; Iij

t
 is the current of the buanch-ij in the 

period-t; Vi 
min and Vi 

max are the voltage limits, Iij
max is the max branch current. 

3.  WPA 

Based on the cooperative hunting characteristics of wolves, Wu Husheng, etc put forward a new 
intelligent algorithm-Wolf pack algorithm (WPA) [17]. It has been proven to has better global 
convergence and computational robustness, and especially suitable for solving high-dimension and 
multimodal function optimization problems with other classical intelligent algorithm such as PSO, fish 
swarm algorithm, genetic algorithm (GA) and so on.  

In nature, the wolf belongs to candidate family and lives in a pack consisting of 5-12 wolves on 
average. In general, the common wolf pack can be divided into three parts: a lead wolf, some scout 

wolves and ferocious wolves. The lead wolf, as a leader, is always the smartest and most ferocious one. 
Scout wolves hunt around for prey. Ferocious ones are responsible for rounding up the prey. 

WPA is different from previous swarm intelligence optimization algorithm. It has three different 
search abilities: hunting behavior, calling behavior, siege behavior, and two intelligent rules: a winner-
takes-all productive rule for lead wolf and a randomly renewable mechanism named survival of the 
stronger for the wolf pack. 

The parameters such as Xi, N, kmax , Tmax , S , Lnear , α, β and the objective function value Y have 

been defined explicitly and all the components have been discussed in detail in [8], so the main 
computation steps are only described below. 

Step1: Initialization. For a D dimension of the search space, the follow parameters are initialized: 
Xi, N, kmax , Tmax , S , Lnear, β. 

Step2: The wolf with the maxium Y value (ie, Ylead ) is selected as lead wolf, and the rest Nsw (an 
inter value between N/(α+1) and N/α) wolves with better Y value, as scount wolves, begin to scout in 
D dimension solution space according to equation (10) until Yi>Ylead or Tmax is reached, then go to 
step3; 
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asin(2 / )p d
id idx x p h step    , {1,2, , }p h L                                           (10) 

Where xid
p is the dth variable value of the wolf-i after moving towards the pth direction; stepa is the 

scouting step length, h is randomly selected in [hmin, hmax] and must be an integer. 
Step3: The rest Nfw (=N-Nsw-1) wolves take calling behavior according to equation (11). If Yi ≥Ylead, 

go to step2; otherwise the wolf-i continue running until L (i, l) ≤ Lnear, then go to step 4; 
1

b ( ) /k k d k k k k

id id d id d idx x setp g x g x                                                        (11) 

Where xid
k+1 is the position of ferocious-wolf- i at the (k+1)th iteration; stepb is the summoning step 

length,  gd
k is the position of lead wolf in the dth variable space at the kth iteration. L(i, l) is the 

distance between the ith wolf and the lead wolf and expressed as Manhattan distance. 
Step4: The position of siege wolves is updated according to equation (12); 

1

c

k k d k k

id id d idx x setp G x                                                                   (12) 

Where λ is a random number uniformly distributed at the interval [-1, 1], stepc is the siege step length.  
The relationship between the step length stepa, stepb and stepc in dth variable space is as follows: 

a b c max min= 2=2d d d

d dstep step step x x S                                              (13) 

Step5: Update the lead wolf to the one with maximum objective function value, and then delete R 
wolves with worst objective function value from the wolf pack and meanwhile produce R wolves 
according to equation (14)  to replace them; 

xid = gd·rand(-0.1, 0.1) , i = {1, 2, … , R}                                          (14) 

Where R is an integer and randomly selected at the interval [n/(2β),n/β] . 
Step6: If the program reaches the precision requirement or the maximum number of iterations, the 

position and Ylead of lead wolf, the problem optimal solution, will be outputted, otherwise go to step2 

to continue iteration until termination condition is met. 
In the above steps, step 2 is fine search, reflecting the local optimal solution search precision; step 

3 is a rough search, reflecting the local optimal solution search efficiency; step 4 is gradually refined 
search, which reflects the accuracy that the local optimal solution is also global one; step 5 produces a 
new generation of wolves, which not only retains the excellence of the local optimal solution founded 
by original wolves, but also increases the probability of reaching the optimal solution to guarantee the 
global optimality of the algorithm. 

4.  WPA for solving ARPCO problem 

In order to apply the WPA to find the optimal control variables of  the ARPCO problem , the vector of 
polulation can be expressed as follows:                                                 



















NDD

D

xx

xx







1

111

X                                                                  (15) 

The objective function Y is evaluated according to equation (16) as follow: 

Y = -f = - PLOS                                                                                                                         (16) 
The initial position of each artificial wolf can be formed as follow: 

xid = xdmin + rand(0,1)( xdmax - xdmin)                                                 (17) 
Where rand (0, 1) is a random number uniformly distributed at the interval [0, 1],  xdmin, xdmax is the 
lower  and upper limit of the dth control variable respectively. 

Lnear is evaluated according to equation (18) as follow: 

                                                     near max min

1

1
d d

D

dD
L x x

 

 
g

                                                     (18) 

Where ω is distance determinant factor. 
For the ARPCO problem, the iteration termination condistion is expresse as follow: 
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leadlead

kk YY     或   k = kmax                                                 (19) 

Where is the convergence control constant number.  

In order to calculate the objective function, position variables from each wolf are firstly mapped 
into the power flow equations and the flow program is executed to obtain the network loss by 
MATPOWER. Y is evaluated according to equation (16). Then the simulation is processed according 
to the WPA solving procedure from step1 to setp6 described above. During the process, these 
variables out of bound are tagged at their boundaries. The simulation is repeated until meeting the 
termination condition. The implementation of WPA for ARPCO problem is depicted in Figure 1.  

Initilization

Map control variables from each 

wolf into load flow data 

Output the position of 

lead wolf and its Ylead

Yes

No
Evaluation Y from load flow 

calculation using MATPOWER

Update wolf position using Eqs. 

(10)–(14)

 

Or T > Tmax? 

1 4
best best 1k kY Y e  

? 

 

Figure 1. Flowchart of propsed WPA for solving ARPCO 

5.  Simulations 

In order to apply the simulations for solving ARPCO problem by WPA are implemented using Matlab 
R2012b on a Windows 7 Professional Intel i5-3210M CPU 2.5GHz 8GB RAM.  

In this paper, the IEEE 33 node radial distribution system which PV, SVC, ESS, CB are integrated 
into is selected as the example system, as shown in figure 2. The network with 37 branches is radially 
operated. The total load power: Pload = 3635kW, Qload = 2265kvar; for each PV: PPV

max = 300kW, cosφ 
= 0.95; for each shunt capacitor (SC): QSC

min = 25kvar, QSC
max = 100kvar; for each ESS: PES

max = 240 
kW, PES

min = -200 kW, Emax = 1200kWh. 
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Figure 2. Modified IEEE 33-bus test system 

The load curve and the sunshine intensity curve of the system at the moment of 24 are shown as 
figure 3. For simplifying the analysis, all of the PV use the same sunshine curve and load node use the 

same load curve. 

 

Figure 3. Load and sunshine profile 

It is seen from figure 3 that the peak value of the load and the peak point of the light does not 
appear at the same time. If there are no control equipments such as energy storage, PV will abandon 
light due to the light load so that  the load absorb power only from the substation during the heavy 

load period , and then the heavy load node voltage will drop and the voltage difference further rise, 
which causes a large number of network loss. 

To test the robustness of this method under the large volume data condition, MATLAB cubic spline 
interpolation method is used to interpolate the above 24 hour data as 96 data points so that the interval 
acquiring the data for the day-ahead scheduling is 15 minutes. 

WPA parameters were specified as according to reference [17]: N = 50, Kmax = 1000, S = 200, Tmax 

= 15, α = 4, β = 5, ε = 10-3. After 68 iteration steps (shown as fig. 4), the global optimal solution were 

found and the mean square error is about 0.0005, the total time is 20. 517s. The ARPCO results are 
shown as figure 5(a) ~ 5(e). PV is almost in max power state because of ESS.      

Figure 5. (a) shows that ESS start to charge at load trough period and to discharge at load peak 
period so as to reduce the total loss in the scheduling period. Again, energy is stored when output of 
PV increases and injected into the system when load power increases, shown as figure 5. (b). Network 
loss is smaller because of smaller voltage difference at load trough period and is larger because of 
larger voltage difference at load peak period. As a result, the total network loss reduces compared with 
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no optimization, shown as figure 5. (e) with less total power loss than the loss in [13]. Figure 5. (c) 
shows that SCB operation occurs when the load demand and PV generation increase, and their 
operation numbers are strictly restricted in the allowable range. Figure. 5(d) shows that the distribution 
system absorbs less active and reactive power from the substation after ARPCO process in order to 

improve the penetration of PV.  
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Figure 4. The WPA error curve 
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Figure 5. ARPCO results  

From table 1, it can be seen that the energy loss obtained by WPA is the lowest and the WPA can 
converge to the optimal solution of the problem in a reasonable amount of time. Therefore the WPA 
for solving ARPCO problem is a competitive algorithm. 

Table 1. Comparison of three algorithm 

Algorithm WPA PSO SOCP 

Energy Loss(kWh) 109.642 118.169 125.705 

Computational Time (s) 20. 517 23. 314 17.161 

6.  Conclusions 

This paper proposed the ARPCO model considering the output of DG, charge or discharge power of 
ESS and reactive power from SBs as control variables. And minimizing the energy loss of the 
distribution network was taken as the optimal objective. The use of WPA technique guarantees 
convergence to optimality in a reasonable amount of time. 

The modified IEEE 33-bus test system was used to demonstrate the accuracy of the ARPCO 

mathematical models and the efficiency of the WPA for solving it. When compared with PSO and 
SOCP technique used in [13], WPA shows more effective because of minimum total energy loss and 
reasonable convergence speed.  

In future, the stochastic of renewable resources can be considered in solving ARPCO problem to 
demonstrate the robustness of WPA. In addition, an advanced WPA with better performance will be 
proposed in future.  
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