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Abstract:  Enhanced oil recovery plays vital role in production phase in a producing oil field. 

Initially, in many cases hydrocarbon will naturally flow to the well as respect to the reservoir 

pressure. But over time, hydrocarbon flow to the well will decrease as the pressure decrease 

and require recovery method so called enhanced oil recovery (EOR) to recover the 

hydrocarbon flow. Generally, EOR works by injecting substances, such as carbon dioxide 

(CO2) to form a pressure difference to establish a constant productive flow of hydrocarbon to 

production well. Monitoring CO2 performance is crucial in ensuring the right trajectory and 

pressure differences are established to make sure the technique works in recovering 

hydrocarbon flow. In this paper, we work on computer simulation method in monitoring CO2 

performance by seismic and resistivity model, enabling geoscientists and reservoir engineers 

to monitor production behaviour as respect to CO2 injection.   

1. Introduction

Greenhouse gases has become an attention as the main cause of global warming. Due to global 

warming, reduction technologies for CO2, the most abundant greenhouse gas, become an urgent 

business. Kyoto Protocol (1997) defined an implementation goal that most of the world’s countries 

could reduce CO2 emission by 5.2% of the 1990 totals. Prior to this, underground storage of carbon 

dioxide was introduced to reduce the effect of greenhouse gases to help in slowing down global 

warming [1].  

The abundant of greenhouse gases often linked with fossil energy sources exploration, production and 

usage [2]. The carbon capture and storage (CCS) project, targeting on reducing CO2 in the 

atmosphere works by storing captured CO2 into geologic structure, such as large sedimentary basins 

in Illinois, Michigan and Western Canadian sedimentary basin [3]. In oil and gas exploration, the CO2 

instead of being stored in large basins, also been widely used in enhanced oil recovery (EOR) to 

retrieve the recovered oil by performing a pressure difference to enable hydrocarbon migration to 

producing wells.  

Figure 1.1: CO2 stored in saline aquifer for CCS project [4] 
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The method, by using CO2 in many cases is the most cost effective method to extract the final 

amounts of recoverable oil from depleted field [5] which share the same technology as carbon capture 

and storage (CCS) in term of development and monitoring [3]. Despite being conceptually the same, 

when implemented in EOR, the seismic and resistivity respond of the CO2 will not be the same as in 

CCS, where the CO2 now will be in contact with hydrocarbon to lead the recovery effort.  

1.1 Enhanced Oil Recovery (EOR) 

For over 40 years, injecting CO2 to tertiary reservoirs has been widely accepted as an effective 

method in enhanced oil recovery (EOR) [6]. Since October 1996, Statoil and its Sleipner partners 

working on Utsira Sand, offshore Norway have injected CO2 about 200 meter below reservoir top [1]. 

In Gullfaks Field in the North Sea, by injecting CO2 instead of water for EOR, significant amount of 

extra oil can be retrieved [7]. By using CO2 as an alternative for EOR, the majority of previous and 

current CO2 EOR projects has high economic return in high gas utilization efficiencies (167-227    

CO2/STB oil) [6].  

In environmental perspective, the potential of CO2 storage combining with EOR is high, up to 60% of 

injected CO2 can be retained in the reservoir at the CO2 breakthrough if reinjection is not considered 

[6] . The criteria for suitable reservoir selection for CO2 EOR has been developed in [6].  

Table 1.1: Optimum reservoir parameters and weighting factors for ranking oil reservoirs suitable for 

CO2 EOR [6]. 

1.2 Resistivity responds of CO2 injected sandstone 

Electrical log has been widely used to provide quantitative correlation in exploitation of oil and gas 

reservoirs to provide an indication on the reservoir content [8]. Direct measurement of geophysical 

data during CO2 injection are not applicable due to technical and cost issues [9]. Therefore, indirect 

measurement consist of time lapse survey, resistivity as well as gravity were applied later on. The 

resistivity value is based on Archie’s Law [8] generally will increase as CO2 concentration increase. 

This is due to resistance built up when more CO2 is added causing harder for the current to flow 

through the reservoir. The increment trend can be seen following the experiment in [10] [11] [12]. 
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Figure 1.2: Changes in resistivity and P-wave velocities for three zones after CO2 injection. Note the 

increasing trend of resistivity as CO2 volume increase [10]. 

1.3 Seismic monitoring on CO2 injection in EOR 

4D seismic exploration or time lapse reservoir monitoring (eg: Figure 1.3) has advanced rapidly over 

the past 10 years to monitor the progress of the injected fluid fronts (eg: water, gas, CO2, etc.) that 

can save hundreds of millions of dollars in optimizing injection programs [13]. A pilot project in 

Nagaoka was conducted and revealed after the injection of CO2, the maximum velocity experience 

3.0% reduction after injecting 3200 t of CO2 and 3.5 % after injecting 6200 t of CO2 [14]. Notice that 

the increment of volume of CO2 injected were increased about two times, but the velocity reduction 

do not increase significantly.  

Figure 1.3: The development of CO2 plume over time, studied using time lapse seismic survey [1] 

1.4 Elastic Bound 

To have a more rational velocity-porosity relations, the gap between well logs and cores with geologic 

model, rock physics diagnostic analysis is used [15]. Expressed based on Hooke’s Law [16], the 

elastic behavior of rock and the pore fluid become the fundamental of rock physics. Gassmann’s fluid 

substitution theorem widely used to relates rock with fluid under three major assumptions: the rock is 

homogeneous and isotropic, the pore space is completely connected and the fluids are movable [17]. 
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While many models proposed include complicated inputs, Gassmann relations reflect the changes in P 

and S wave velocity as accordance to saturation changes with simpler inputs. Density and P wave 

velocity logs are initial inputs and the imported parameter during substitution are matrix bulk modulus 

(Kmatrix), frame or dry rock bulk modulus (Krock), porosity (ø) and rock shear modulus (G) [18]. 

 

 
 

Fluid substitution formula by Gassmann [17] (1.1). 

 

Since the shear modulus is insensitive to fluid changes, it will remain constant during the 

substitution [18].  

 

Table 1.2: Elastic and electromagnetic properties of some elements [19]. 

 
 

In order to substitute fluids it is necessary to establish their properties. In this case, the two fluids in 

discussion are water (or brine) and CO2. Density and bulk modulus values (eg: Table 1.2) could be 

obtained from laboratory measurements but in most of the cases some empirical relations are used 

such as the equations of Batzle and Wang [20]. These yield the density and bulk modulus knowing 

temperature, pressure, gravity of the fluid (ºAPI in oil) and concentration (ppm in brine). With these 

input values, a good approximation of fluid properties can be made at certain conditions. Some 

researchers caution that using the Batzle and Wang [20] equations as well Gassmann relations (1.1) 

[17] which were developed for a gas-oil-water scenario, might not represent the reality of a CO2 fluid 

substitution.  

 
Figure 1.4: Voigt-Reuss upper and lower bound [21] 

 

AeroEarth 2016 IOP Publishing
IOP Conf. Series: Earth and Environmental Science 38 (2016) 012006 doi:10.1088/1755-1315/38/1/012006

4



Fluid bulk modulus and fluid density will manifest the fluid substitution changes and therefore, they 

will affect the model and define the variations in parameters for seismic modelling. To establish 

matrix characteristics, one that needs to determine the matrix bulk modulus (Kbulk). These values are 

tabulated for main mineral components such as quartz and calcite among others. Most of the time, the 

matrix is composed of different kinds of minerals, and in case that fractional content information is 

available, the bulk modulus can be calculated using Voigt-Reuss-Hill (VRH) equation [22]. It is 

possible to obtain the bulk modulus (Kvrh) using Voigt and Reuss bulk modulus respectively (Kvoigt 

and Kreuss) [18]: 

      
 

 
                 (1.2) 

       [
  

  
  

  

  
]
  

(1.3) 

                    (1.4) 

Figure 1.5: Voigt (isostrain) and Reuss (isostress) illustration [22]. 

2. Methodology

2.1 Homogeneous Core Simulation 

To study the P-wave velocity, amplitude and resistivity variation when CO2 is injected to sandstone 

sample, we use computer simulation based on cylindrical sample of Berea sandstone (50 mm in 

diameter and 100 mm in length, 19% porosity) [10] as a reference value. 

Figure 2.1: Configuration of piezoelectric transducers and electrodes with Berea sandstone 

sample for seismic velocity and resistivity measurements, respectively. The figure indicates the 

zone utilized for resistivity measurements as well as a diagram of ray paths for P-wave velocity 

measurements and P-wave velocity tomography [10]. 
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Two flat current electrodes, 50mm diameter, were attached at the top and the bottom of the sample, 

and four ring-shaped potential electrodes of 2.5mm width were attached to the sample’s surface at a 

spacing of 25 mm and made as an array. These electrodes are made of copper mesh coated with silver, 

which to avoid corrosion due to contact with acid. 

For seismic value monitoring, our equipment setting were different from [10]. We use a coupled 

transducer which will be source and receiver on both end of the sample. To have a more realistic data 

value with reservoir condition, the experimental setup is made as in [10]. Note that the Berea 

sandstone will be in water saturated and later in oil saturated condition. The measured value (for 

water-CO2 fluid substitution) will be cross checked with values from Vera [23]. 

CO2 injection is monitored in time and saturation, and the resultant changes in resistivity and P-wave 

and S-wave values will be recorded. At the end of the experiments, we wish to obtain updated 

experimental result as in [10] by computer simulation for homogeneous media. 

Figure 2.2: Configuration of experimental setup (a) and measurement setup (b) [10] 

For the computer simulation, we developed a Python language programmed using hybrid Python 

version IDE, named Anaconda, first for homogeneous media. The purpose of the simulation is to 

generate expected result, with total control on the rock properties parameter, to enable us to measure 

variable range of rock properties rather than to rely on a single core sample.  

The following setup is for 4 layers modelling: 

For the purpose of our experiment, based on [10] we developed a core model with parameters as 

follows: 
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Table 2.1: Core model parameters 

Parameters Sandstone Brine Gas 

Bulk Modulus (GPA) 39 3.0 0.038 

Shear Modulus (GPA) 44 - - 

Density (g/cc) 2.65 1.039 0.15 

Resistivity (ohm.m) 15 1.0 30 

Cementation Factor (m) 1.59 - - 

Biot Coefficient 2.0 - - 

The volume of 100% CO2 saturation in the core was set to be 20 mL for each layer, with rate of 

injection of 0.005 mL/min. The first layer to second layer is 50 min after. The numerical methods to 

calculate the velocity and resistivity of the simulation are as follows: 

Vp calculation: 

1. Calculation of matrix modulus by Krief et al. method.

2. Calculation of dry and brine saturated formations by Biot-Gassmann formula.

3. Mix the gas and brine fluids modulus based on their saturation by using Wood’s formula to

get effective fluid modulus.

4. Repeat Biot-Gassmann and use effective fluids calculated.

Resistivity calculation 

1. By matrix modulus, gain porosity extrapolation from brine velocity by Gassmann formula for

each brine saturation percentage.

2. Calculate brine saturated resistivity from CRIM formula.

3. By brine modulus, repeat porosity extrapolation from mix fluids (brine-gas) velocity by

Gassmann formula.

4. Using brine saturated resistivity, repeat CRIM formula to calculate mix fluids saturated

resistivity.

3. Result and Discussion

3.1 Core simulation results 

We acquire the simulation result using Anaconda programming IDE, based on Python 2.7 

architecture. The results of the heterogeneous core sampling and comparison with our simulation 

(homogeneous media) are as follows. 

Figure 3.1: Time variation of velocity by injection of supercritical CO2 into water saturated Berea 

Sandstone in heterogeneous media [10] 
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Figure 3.2: The effect of substitution of Vp from brine to CO2 gas in homogeneous media simulation. 

Figure 3.3: Time variation of resistivity by injections of supercritical CO2 into water saturated Berea 

sandstone in heterogeneous media [10] 

Figure 3.4: Effect of substitution of resistivity from brine to gas in homogeneous media simulation. 
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Our simulation shows the same trend with established work by [10] although our simulation work is 

applied on homogeneous media while Kim et al. [10] work is applied on core sample which has 

heterogeneity included. Therefore, we can conclude that our simulation method can be used in further 

work to monitor CO2 injection in sandstone using seismic and resistivity method. By having a 

computer simulation method, we can have a wide range of prediction on the CO2 effect on seismic as 

well as resistivity value. Rather than to rely on core sampling in laboratory, we can now predict the 

expected value of seismic and resistivity in a controlled environment with a low cost, fast and robust 

method.    

 

 

4. Conclusions  

 

Despite seismic data quality improvements and excellent well control, to achieve correct 

interpretation, rock physics is required to quantify the connection between geology and seismic data 

[15]. It is noted from [10] that the seismic sensitivity in detecting CO2 will be not significant after it 

reach 20% saturation, therefore resistivity value which remain in steady trend of increment will be an 

alternative once more CO2 volume is added to the reservoir. We have demonstrated that our 

simulation which is first done for homogeneous media will be a great tool in expecting the outcome in 

monitoring CO2 EOR using seismic and resistivity. However, we need to extend the research towards 

heterogeneous media simulation as the real geology often seen as heterogeneous. 
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