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Abstract. A model of high-penetration micro-hydropower system with no storage is presented 
in this paper. This technology is designed in order to reduce the diesel fuel consumption and 
cost of electricity supply in a resort island located in the South China Sea. The optimal 
hydropower generation for this system depends on the available stream flow at the potential 
sites. At low stream flow, both the micro-hydropower system and the currently installed diesel 
generators are required to feed the load. However, when the hydropower generation exceeds 
the load demand, the diesel generator is shut down. Meanwhile, the system frequency is 
controlled by a secondary load bank that absorbs the hydropower which exceeds the consumer 
demand. This paper also presents a discrete frequency control system using proportional-
derivative (PD) controller. The controller is employed in order to manipulate the system 
frequency by controlling the secondary load system. The simulation results indicate that a 
variety of load conditions can be satisfactorily controlled by the PD controller. Hence, this 
particular type of controller is suitable to be implemented in micro-grid systems for remote 
areas that require low cost and easy-to- maintain controllers.  

1. Introduction 
The resort island selected for this study is Tioman, as it represents the typical energy requirements of 
many resort islands in the South China Sea. It is situated at 2°47'47"N latitude and 104°10'24"E 
longitude. The island’s geographical conditions, such as its hilly landscape and abundant stream flows 
from highland areas permits the installation of run-of-river hydropower system [1]. The renewable 
energy (RE) assessment for Tioman Island had been previously assessed by several researchers. 
Ashourian et al. proposed an optimal combination of solar energy and wind energy for the Juara 
village of Tioman Island [2]. Meanwhile, Chik et al. performed sustainability indicators to determine 
sustainability degree for solar, wind and hydro resources on the island [3]. Both of the studies 
performed only RE assessments and did not consider the system level modeling of an RE system for 
the island based on actual assessed RE resources. This paper will provide a detailed system level 
model of a run-of-river hydropower that has the potential to be installed on the island, based on the 
available hydropower resources of the island. 
 In previous work [1], energy audit and the surveys of available hydro resource potentials in Tioman 
Island were conducted. The results show that, based on annual average hydropower estimation, a total 
of 10 potential sites have been identified to have run-of-river hydropower potential from 26 
investigated sites on Tioman Island. Therefore, it is suitable to develop a run-of-river hydropower 
system in order to mitigate the diesel fuel consumption on the island. 
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 Secondary load controller (SLC) is required in the micro-grid systems to dissipate the excess 
hydropower and maintain the system’s stability. The controller maintains a constant generator output 
by providing a secondary load. There are several advantages of SLC [4], such as the incorporation of a 
cheaper and simpler turbine with less moving parts in the run-of-river hydropower system architecture. 
The SLC also provides high reliability, low maintenance, and a simple operating system that can be 
installed anyplace in the electrical system. Therefore, SLC is the prominent solution for regulating the 
induction generator output voltage and frequency for run-of-river hydropower system supplying rural 
load with cost-effectiveness as the primary factor.  

2. System level run-of-river hydropower model  
The run-of-river hydropower Simulink SimPowerSystems model is shown in figure 1. The hydro 
turbine model uses general hydropower equation as in equation 1 to compute the turbine mechanical 
power (Pm). 

 m fP Q h g e= × × ×  (1) 

 where Pm is theoretical power output from turbine (kW), h is gross head height (m), g is 
gravitational constant (9.81 m/s2), and ef is the efficiency factor (assumed as 0.7 [1]). The turbine 
mechanical power is then converted to turbine torque output (Tm) as an input to the asynchronous 
generator.   
 The grid voltage is controlled at its nominal value by the synchronous condenser and its excitation 
system. The secondary load block is designed to absorb the excess power generated by the 
hydropower system. The secondary load system architecture comprised of eight sets of three-phase 
resistors connected in series with Gate turn-off thyristor (GTO) switches. The nominal power of each 
set follows a binary progression in order for the load to be varied from 0 to 446.25 kW by steps of 
1.75 kW. Meanwhile, the system’s frequency is controlled by the discrete frequency regulator block. 
 

 
Figure 1. Simulink model of run-of-river hydropower system with load frequency control. 
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3. System level run-of-river hydropower model  
The block diagram of the system control design is presented in figure 2. The controller is employed in 
order to manipulate the system frequency by controlling the secondary load system. Three Phase 
locked loop (PLL) systems are used to measure the system frequency. Then, the system frequency is 
compared to the reference frequency (50 Hz) in order to obtain the frequency error. This error will be 
integrated in order to get the phase error, which will be used by the controller to produce an output 
signal representing the required secondary load power. This signal is converted to an 8-bit digital 
signal for controlling the switching of the three phase secondary loads. All switching is performed at 
zero crossing voltage in order to minimize the voltage disturbances.  
 

 

Figure 2. Secondary load system block diagram. 

3.1. PD controller 
The PD controller has an error signal e(t) as its input, which is obtained from desired output r(t) and 
actual output y(t), as seen in equation (2). The error signal used by the controller in order to produce a 
control signal u(t) as its output is seen in equation (3).   

 ( ) ( ) ( )e t r t y t= −   (2) 

 ( ) P D
deu t K e K
dt

= +   (3) 

4. Simulation results and discussions 
The model simulated under two different scenarios: an additional 50 kW load at t=1 second, and a 50 
kW load drop at t=1 second. The system’s frequency output for the PD controller is shown in figure 3. 

 
Figure 3. Simulation results of grid frequency for a) 50 kW additional load b) 50 kW load drop. 
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To demonstrate the performance and robustness of the proposed controller, performance indices 
such as overshoot, undershoot, settling time (at 0.05 %), steady state error (SSE) integral of the 
absolute error (IAE), integral of the squared error (ISE) and integral of time multiplied by the absolute 
error (ITAE) were considered in the analysis. The performance indices of the PD controller are shown 
in table 1. 

Table 1. Performance indicators of the PD load frequency controller. 

Performance  
indicators 

Load conditions 

 50 kW additional load  50 kW load drop 
Overshoot (%) 0.554 0.756 
Undershoot (%) 1.333 0.484 
Settling time (s) 5.132 6.316 
SSE (Hz) 0.004 0.023 
IAE 2.430 2.404 
ISE 0.641 0.630 
ITAE 9.583 9.487 

5. Conclusion 
In this paper, a system level of a run-of-river hydropower system model with PD secondary load 
controller was presented to describe the system’s behaviour under different load conditions. The 
system frequency was regulated by a secondary load bank that absorbs the hydropower, which exceeds 
the consumer’s demand. The simulation results indicate that a variety of load conditions can be 
satisfactorily controlled by the PD controller since it exhibits small overshoot, settling time, SSE, IAE, 
ISE and ITAE in the frequency control. 
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