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Abstract. In this paper, a new modified  model averaging  method was proposed.  The 

candidate model construction was performed by distinguishing the covariates into focus 

variables and auxiliary variables whereas the weights selection was implemented using 

Mallows criterion.  In addition, the illustration result shows that the applied model averaging 

method could be considered as a new alternative method for supersaturated experimental 

design as a typical form of high dimensional data.  A supersaturated factorial design is an 

experimental series in which the number of factors exceeds the number of runs, so its size is 

not enough to estimate all the main effect.  By using the model averaging method, the 

estimation or prediction power is significantly enhanced.  In our illustration, the main factors 

are regarded as focus variables in order to give more attention to them whereas the lesser 

factors are regarded as auxiliary variables, which is along with the hierarchical ordering 

principle in experimental research.  The limited empirical study shows that this method 

produces good prediction. 

 

1.  Introduction  

Nowadays, the necessity of high dimensional data is increasing in all fields of study and has wide 

applications.  Fortunately, the rapid growth in information technology supports the development of 

high dimensional data analysis.  According to [1], high dimensional statistics refer to statistical 

inference when the number of unknown parameter is much larger order the sample size.  Nevertheless, 

analysis of such data is impossible to be performed without additional assumption or penalization. 

A typical form of high dimensional data stemmed from experimental data is supersaturated 

factorial design.  A supersaturated factorial design is an experimental series in which the number of 

factors exceeds the number of runs.  The supersaturated design (SSD) is recommended in high cost 

experiments and in situation where the number of effects is large, to screen few of a huge number of 

potentially active factors might be believed to be significant.  There were some designs initiated to 

SSD.  According to [2], Satterthwaite (1959), the initiator of the SSD, considered SSD to be useful in 

the initial investigation of large experiments and also proposed a random balance design for 

constructing SSD.  Another construction method suggested by [3], namely E(s
2
) criterion to measure 

the efficiency of SSD.  Hadamard matrix was a well-known design proposed by [2] in constructing 

SSD.  Several authors have proposed various strategies in solving the challenges in SSD data analysis 

using some regression procedures, such as forward selection by [4], stepwise and all-subsets 

regression by [5] and partial least squares by [6].  There are also shrinkage regression approaches such 

as Smoothly Clipped Absolute Deviation procedure [7] and the Dantzig selector [8]. 
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Many physical experiments can be high costly and time consuming to be studied using 

conventional method.  In computer experiments or computer-based simulation, for example, the 

experiments can only be simulated by a computer modelling program in which the number of factor 

can be large as possible.  Consequently, the running time is the mostly thing to be considered instead 

and the goal is turning to how to produce a best prediction model at any combination of values of the 

inputs that fitted the data [9].  Such concerns are in accordance with the motivation of model 

averaging as an alternative to variable selection or screening in SSD point of view. 

Model averaging (MA) is another approach to improve prediction accuracy in analysing high 

dimensional data.  Instead of relying on only one best model, the method refers both inference and 

prediction to the average over a set potential models in particular manner. The key issues of the 

methods are for example, weight selection criterion and the way of construction the candidate model 

[10]. Getting the best prediction model is preferred goal instead of estimation.  Application of MA in 

SSD, have not received many attention yet.  So far, the major focus of SSD analysis has been on 

screening or variable selection.  MA approach in SSD, based on literature study, had been conducted 

by [11].  The paper proposed model averaging method by using BIC weight.  Another weight used in 

model averaging namely mallows averaging which is refer to least square model averaging proposed 

by Hansen [12].  In his paper, Hansen performed different approach in preparing candidate models 

that is by constructing nested models while the weights is selected by minimizing Mallows criterion. 

The current paper introduced a new typical MA approach which is tailored to candidate models 

preparation.  Here modification, the main factors of matrix model are categorized as focus variables 

that must be included in the model and their interactions that are less certain as auxiliary variables.  

The approach went along with effect hierarchical principle to be considered to address the relative 

importance and relationship among effects.  The principle set the lower order effects as more 

important factors than the higher level effects while the same order consider to be equally likely 

important [4]. Henceforth, the candidate model is constructed by augmenting the matrix of focus 

variable with the different combination of one or several auxiliary variables.  Besides reducing the 

number of candidate model, the reason of this differentiation is to improve the prediction performance 

of the model [13].  In weights selection, Mallows criterion is applied which is proven asymptotically 

optimal in the sense of achieving the lowest possible squared error [12]. 

This paper is organized as follows. In Section 2, the supersaturated experimental design is 

described.  Section 3 reviews the intended model averaging.  In the Section 4, an illustration of MA 

approach in SSD is performed to show how well the prediction matched the actual model.  Section 6 

gives some concluding remarks 

2.  Supersaturated Design 

Supersaturated design is fractional factorial design in which the number of actual effects exceeded the 

number of runs.  The SSD is divided into two classes, multi-level designs with s level on each factor 

and mixed-level in which each factor has different level.  The current paper was concerned with multi 

levels of linear main effects model.  Supposed the model intended is � = � � + � (2.1) 

where � is the � × 1  response vector, X is an � × (� + 1) model matrix, vector of � =(��, … , ��)� constitutes the parameter and  � is a vector of independent normally distributed random 

errors with mean 0 and variance ��.  The matrix � can be a union of main effects and their 

interactions.  It is assumed that each of the � factors has two levels, contrast between high and low 

denoted by 0 and 1.  

If the model matrix � is non-singular then the matrix (�′�)�� exists and the least squares estimator 

of parameter vector � is denoted by �� = (�′�)���′� .  According to [14], if the matrix model is away 

from orthogonality and presence of multicollinearity then detection of the true active factors is hardly 

to be performed. 
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3.  Model Averaging 

Model averaging is considered the alternative to model selection, especially in estimation of model 

with high dimensional data.  Model selection will choose one of a wide set of competed models based 

on certain selection criterion with possibly contradictory conclusion such as  ��, BIC and AIC.  On 

the other hand, model averaging treats each potential model as an information contributor about the 

parameters of interest.  The contribution is expressed in a weight assigned to the candidate model 

which is determined based on certain criterion.  The goal of model averaging is not to find the best 

possible model but rather to get the best possible prediction model. 

The first step in model averaging is to construct the model candidate.  After getting estimates of 

each model, model averaging assigning weight to each of them and finally, takes the weighted 

averaging of all parameter vectors to obtain the model averaging estimator. 

3.1.  Framework of MA 

Consider the � observations �(�� , ��);  = 1, … , �!, where �� is response variable and "� is a vector of �-dimensional explanatory variables where the number of predictor is allowed to increase with the 

sample size �.  The relationship between the response variable and the explanatory variables will be 

considered from observed data.  The relationship is explained in a multiple linear regression model, 

can be expressed as  

� = # �$"$ + �
�

$%�
 

(2.2) 

where &(') = 0 and )*+(') = ��.  The intercept term is dropped by assuming that the means of the 

response variable and the input variable are already subtracted out. 

Claimed , candidate models and the ith model can be written as follow 

,�:   �� = # �$"$$.�/
+ � 

(2.3) 

Where 0� was subset of explanatory variables contained in ith model.  In matrix form, equation (2.2) 

can be written as equation (2.1) and equation (2.3) as below ,�:   �� = ���� + � (2.4) 

Where �� = [�$]$∈�/ is the vector of parameter � × 4; 4 ≤ �  
In model selection methods, according to certain criterion, it will be chosen a single best model: �6 = 76 =  ∑ �9$"$$∈�/ .  

Recall the model ,� in equation (2.4), its prediction can be written as 76� =  �����  

Supposed :� is the weight associated with ith model and let ; = (:�, … , :<)= be the vector in unit 

simplex in ℝ<  ?@ = �; ∈ [0,1]< ! 
then model averaging estimator for equation (2.1) takes the form 

76<A = # :�76�  <

�%�
 

(2.5) 

Based on the previously framework, the steps of MA analysis is itemized below: 

1. Construct several candidate models ,�;  = 1, … , ,, as described in equation (2.4).  

2. Estimate each model ,� 
3. Determine weights based on certain criterion 

4. Average out weighted prediction of those models, as in equation (2.5) 

3.2.  Model and Estimation 

Supposed the linear regression model of model in equation (2.1) is mentioned in the framework of 

[13] as below � = �� + � =  ��B� + ��B� +  � (2.6) 

The matrix of explanatory variables is � = (�� |��);  �� (� ×  D) is matrix of focus variables refer to 

intercept and main factor; �� (� ×  +) is matrix of auxiliary variables refer to their interaction.  Thus, 
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vector of parameter consists of BE = F��, ��, ��, … , �GH′ and  BI = F�GJ�, �GJ�, … , �KH′.  It is also 

assumed that D ≥ 1 ; + ≥ 0, ++ ≤ � − 1 ; that is � = (�� |��) has full column-rank.  According to 

Magnus [13] the model in equation (2.6) is more general than the conventional case where typically all 

variables are auxiliary except the constant term. Such form also allows some variables to be included 

in the model even when diagnostic tests suggest it to be removed or permitted ones as must contained 

in the model.  Moreover, such classification could reduce the number of candidate model. 

The least squares estimator of  � for a full model where all the auxiliary variables are included in 

model is 

�� =  NB�EB�IO =  (�′�)���′� 
 

The set of candidate models consist of different models arise when a different subset of the B�, is 

set to zero in other words each model matrix of candidate models consist of focus variables 

incorporate with combination of auxiliary variables so there are totally ,=2K candidate models to be 

consider. 

Consider Q� = ( +� ×  +) a selection matrix to choose the included auxiliary variables, where +  is 

the number of auxiliary variables contained in ,�.  So, the estimators for the candidate model ,�, is 

��� =   FR</′R</H��R</=  � (2.7) 

where R</ = ( ��|��Q�= ).  For a full model least square estimator, ��� =  ��, with Q� = SK, an identity 

matrix with + dimension.  On the contrary, Q = T is for the least square estimator of the smallest 

model among all possible candidate models, that was the model with �� as the design matrix.  General 

form of the selection matrix is Q� = (SK/|0K�K�) and its column combination. 

Suppose ; = (:�, … , :<)= is a weight vector with  : ≥ 0 and satisfied  ∑ : ,1 = 1, that is the 

weight vector belongs to the unit simplex in ℝ, : 

ℋ< = V; ∈ [0,1]< ;  # :�
<

�
= 1  W 

then the averaging estimator of � is  ��<A =  ∑ :����<�  

If the corresponding prediction candidate model is  

76� = R</��� = R</FR</′R</H��R</=  � = X</�  

where 

 X, = R</FR</′R</H��R</=  

then model averaging prediction of equation (2.6) can be written as 76YZ = ∑ :�76�<� =∑ :�X</�<�  = P(w)y (2.8) 

3.3.  Mallow Weight Criterion 

There are various methods in determining the weights of model averaging.  One of them was Mallow 

averaging proposed by Hansen [12] in which the selection weights is performed by minimizing a 

Mallows criterion.  Such criterion for the averaging estimator is [(;) =  '̂(;)='̂(;) + 2��]+(X(;)) 
where '̂(;) = � − R ��<A, 

If ]+(X(;) is rewritten as ^ = (_�, … , _<)′;  _� is the number of parameters in ith model, then  `(;) = ;=�a=; + 2��;′^  (2.9) 

which is a quadratic form in the vector ;.  

By minimizing the criterion in (2.9), the weight vector is 

;6 =  argmin; ∈  ℋ,`(;)  (2.10) 

4.  Illustration of MA Application in Supersaturated Designs 
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In order to apply model averaging method in SSD, an illustration will be presented based on [6] on pg. 

443.  Its goal was to develop an epoxide adhesive system for bonding a polyester cord.  The 

experiment involved 23 factors with 14 runs or experiments.  The response is strip adhesion, which 

needs to be maximized.  After a screening analysis using stepwise regression, there are 6 significant 

main effects to be considered.  Those effects are 4,10,12,15 and 19.  A further analysis was planned by 

involving also two-factor interaction effects.  As there are 5, hereafter denoted by A,B,C,D and E 

respectively, the analysis would consist of 5 main effects and 10 interaction effects with an additional 

parameter of intercept.  Thus, there were as many as 16 parameters to be estimated with only 14 

observations that was a 14 × 16 design matrix.  It was a typical problem of high dimensional data, 

typically, supersaturated design experiment that reasonable to be solved using model averaging 

analysis.   

Based on those resulted factors, the further analysis conducted by using model averaging with the 

follow steps. 

1. Define the model by setting the main effects A, B, C, D and E as focus variables and the 

interaction effects, namely AB, AC,…, DE as auxiliary variables as was displayed in Table 1. 

Supposed the intercept and all factors are denoted by "�, "�, … , "�h  respectively, the model could 

be written as 

� =   i� + # i�"�
h

�%�
+ # i�"�

�h

�%j
+  � 

(2.11) 

2. Prepare the candidate models based on the factors in step 1, each of which is composed of 

intercept and focus variables appended with combination of auxiliary variables sequentially.  Thus, 

the design matrix of the first group of candidate model consists of model with focus variables only 

because R<k = ( ��|��Q�= ) = l� where Q�= = T.  The second group consists of model with focus 

variables and one of auxiliary variables.  In this case, the form of selection matrix was Q� = (S1|0����) = (S1|Tm) and its column combination, those are (1 0 0 0 0 0 0 0 0 0), (0 1 0 0 0 0 0 0 0), … , (0 0 0 0 0 0 0 0 1) respectively.  The next group is 

contained model with focus variables and two auxiliary with the form of selection matrix was 

Q� = (S2|Tn) = o1 00 1p0 0 00 0 0   00   0 0 00 0 0   00q and its column combination, for 

example  o1 0 00 0 1    0 0 00 0 0   0 0 00 0 0   00q and o1 0 00 0 0    0 0 00 1 0    0 0 00 0 0   00q.  So do 

the next groups. 

3. This step was performed using R program.  The package optimx used to solve quadratic 

programming in order to get the vector weight proposed in equation (2.10).  To estimate the 

candidate models, least squares method is applied.  The predictive ability of model averaging 

prediction is validated using leave-one out-cross validation (LOOCV).  According to [15], LOOCV 

is almost unbiased but has high variance, however, recommended to be used where the sample data 

is limited.  It is a typical case of k-fold CV with k = 1 in which each of 14 iteration nearly all the 

data except for a single observation are used for training and the model is tested on the single 

observation.  The MAPE used to measure mean of the absolute value of the percent errors, that is 

MAPE = �
@ o∑ wxyzw{�|K}~�xy}~

wxyzw{@� q 100%   

Table 1. Supersaturated design matrix with 5 main factors and their interactions 

Run Adhesion  A B C D E AB AC AD AE BC BD BE CD CE DE 

1 133 0 1 0 0 1 1 0 0 1 1 1 0 0 1 1 

2 62 0 0 0 1 0 0 0 1 0 0 1 0 1 0 1 

3 45 1 1 1 1 0 0 0 0 1 0 0 1 0 1 1 
4 52 1 1 0 1 1 0 1 0 0 1 0 0 1 1 0 

5 56 1 0 0 1 1 1 1 0 0 0 1 1 1 1 0 

6 47 1 1 0 1 1 0 1 0 0 1 0 0 1 1 0 
7 88 0 1 1 0 1 1 1 0 1 0 1 0 1 0 1 

8 230 0 1 0 0 0 1 0 0 0 1 1 1 0 0 0 

9 32 0 0 1 1 0 0 1 1 0 1 1 0 0 1 1 
10 53 1 0 1 1 0 1 0 0 1 1 1 0 0 1 1 

11 276 1 0 0 0 0 1 1 1 1 0 0 0 0 0 0 

12 145 0 1 1 0 0 1 1 0 0 0 1 1 1 1 0 
13 130 1 0 1 0 1 1 0 1 0 1 0 1 1 0 1 

14 127 0 0 1 0 1 0 1 0 1 1 0 1 1 0 1 
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The value of actual and prediction are described in Figure 1 and Figure2  

 

 

 

 

Figure 1. Plot of predicted against actual 

values 

 Figure 2. Plot of actual and predicted values 

 

Refer to Figure 1, the value of actual against prediction is scattered closely to the absolute line.  

The value of both actual and prediction are shown in Figure 2.  Their value is relatively having the 

same trend.  As one of best prediction performance criterion, the mean absolute percent error (MAPE) 

is equal to 91%.  The value of �� is equal to 0.99.  It designates a high performance result of fitting 

because performed in collaboration with cross validation that is able to avoid overfitting.  Thus, the 

value of �� could indicate a good prediction.
 

5.  Conclusion 

This study concludes that model averaging method could be applied in supersaturated experimental 

design as a typical of high dimensional data.  That method was a modification of model averaging in 

which the candidate model construction is performed by distinguishing the matrix model into focus 

variables and auxiliary variables whereas the weighted selection is using Mallows criterion.  In the 

case of experimental data set, main effects are regarded as focus variables, while the interactions as 

auxiliary variables.  This differentiation follows the hierarchical ordering principle in experimental 

researches to address the relative importance among effects. 

Based on our limited empirical study as was illustrated above, this method results a prediction 

model with good performance according to the value of MAPE and ��.  However, an advance study is 

needed to assess its performance in handling multilevel and mixed level experiments.  Comparison 

with other type of model averaging is also highly recommended to be done in order to evaluate 

whether the modified model averaging method is better than others.  Moreover, the further study in 

concern with criterions of estimator such as unbiasedness, efficiency and consistency would be a 

worth complement task. 
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