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Abstract. The Earth’s subsurface is an anisotropic medium where the velocity of seismic
waves alters in different propagation angles. Omitting anisotropy in seismic imaging not only
brings mis-positioning of migrated dipping events but also fails to retain dipping energy during
dip-moveout. To account for the efficacy of seismic anisotropy in imaging, an anisotropic
wave equation must be engaged. Seismic traveltime computing is fundamental of both
Kirchhoff migration and tomography algorithms. Two main categories of traveltime computing
involve traditional ray tracing methods and finite difference eikonal solvers. In this study, we
present two techniques of initial-value ray tracing and fast marching eikonal solver in isotropic
and vertical transverse isotropy (VTI) media, and a comparison between results is
demonstrated for more evaluation. Although the ray tracing approach is able to compute
multiple arrivals with great precision, the eikonal solver is faster and more robust for traveltime
computation. Since the ray tracing result is not a deterministic solution and it depends on the
initial circumstance, employing the eikonal solver method are more preferred and suggested.

1. Introduction

Hydrocarbon and geothermal reservoirs, and overlying strata are comprised anisotropic rocks.
Considering anisotropy into account is necessary not only to avoid distortions in imaging, but also
provides important information about lithology and fracture networks. One of the causes of anisotropy
in sedimentary rocks is the thin layering. If the structure has horizontal layers, it is a TI medium with
vertical axis of symmetry (VTI). One of the challenging problems in seismic imaging is the calculation
of time taken by seismic wave for traveling from source to receiver. In P-wave velocity analysis and
imaging, several traveltime computing algorithms have been developed for VTI condition [1-3]. There
are two principal classes of traveltime computing which include ray tracing and eikonal solver
methods.

The ray technique was firstly employed to study the propagation of the high-frequency elastic
waves by Babich [4]. The main algorithms in ray tracing are defined as shooting and bending methods.
The shooting approach utilizes a given initial direction and position for the ray and an interpolation
tool to reach a certain point which is also known as initial-value method [5]. For modeling and
imaging of complex structures by using shooting method, one can compute the multiple arrivals
containing the most energetic wave which does not necessarily correlate to the first arrival. Sun and
Schuster [6] employed the initial-value approach for the wave path migration. Julian [7] developed an
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initial-value method to track rays in inhomogeneous media which is applied by Engdahl [8] for
earthquake analysis.

An efficient alternative to compute traveltimes is solving the eikonal equation by employing finite
differences [9, 10]. Although eikonal solvers only provide the first arrival times, they can compute
traveltimes between two points. An attempt to extend eikonal solvers for obtaining multiple arrivals
are conducted by Bevc [11]. Various techniques are introduced to acquire the solution of the eikonal
equation comprising single-pass methods, embedding methods, sweeping methods and iterative
methods [9]. The main difference of these techniques is that how they cope with the complication of
multi-valued solutions, finding the solution in the vicinity of cusps and discontinuities [12].
Anisotropy is initially added to an eikonal solver algorithm by Dellinger and van Trier [13]. Fast
sweeping methods are originally proposed for isotropic media [14], however, a modification is
executed to handle the anisotropic condition [15]. Single-pass or fast marching method (FMM) is
another tool to compute the traveltimes, though it is not generally applicable for anisotropic medium
[10].

This paper presents the initial-value ray tracing and fast marching eikonal solver in isotropic and
VTI media. An anelliptic VTI wave equation is used as a kernel of the ray tracing system. The ray
tracing problem solved by a forth order Runge-Kutta integrator. The fast marching finite difference
algorithm, which is used as our eikonal solver, belongs to the family of upwind finite difference
schemes [16]. Although the ray tracing approach is able to compute multiple arrivals with great
precision, the eikonal solver is faster and more stable for traveltime computation. We discuss the result
of both approaches and compare them to choose the best applicable method for the further study.

2. Theory of initial-value ray tracing

The kernel of a ray tracing algorithm is the wave equation. Fomel [17] enhanced the anelliptic qP
wave approximation proposed by Muir and Dellinger [18] through replacing the linear approximation
with a nonlinear one. Using the shifted hyperbola approximation, he obtained the following
approximation for P wave phase velocity:

v3(0) ~ %e(Q) + %\/62(9) + 4(q — 1acsin?6cos26 (1)

where a = ¢;1, ¢ = ¢33, ¢j(X) are the density-normalized components of the elastic tensor, 6 is the

phase angle between the phase direction n and the axis of symmetry, and q and e(0) are the
anellipticity coefficient and the elliptical part of the velocity, respectively, defined by:
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Similarly, the shifted hyperbola approach is applied on the Muir’s approximation to unlinearize the
equation [17]. The new group velocity approximation is:
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where A=1/a,C =1/c,Q =1/q, O is the group angle, and E (0) is the elliptical part:

E(®) = Asin?0 + C cos?0 Q)

The initial-value ray tracing is broadly utilized in the shooting method of two-point ray tracing [5].
In the one-point technique, an initial given point X, such as the source location, and an initial ray
direction P, are used to constitute the complete system of initial conditions for calculating the ray
trajectory X (o) and the traveltime along the ray T'(o). By applying the initial values X(0) = X,
P(0) = Py, and T(0) = 0 in the ray tracing system
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rays are obtained. Using the Euler’s method, an approximate solution for the ray tracing problem can
be achieved by taking a small step Ao and advancing the solution according to:

X(Ao) = X; = Xy + PyAc , @)
P(Ag) = P, = Py + g(Xo)Ao )
where g(X) = S(X))VS and S(X) is the slowness function. Continuing the first step leads to the
iteration
(840)*
Xie = X1 + P_180 + g (Xi—1) —, €
Py =Pk_1+MAO' (10)
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and by using the third part of equation (6) and integrating a third order polynomial fitted at the end
points of the Ao interval together with its derivatives, traveltime T along the ray can be defined as:

2 2 _
TN — S (XO);S Xn) Ao + 25;1152 (Xk)AO' + gXo)-Py 6.9(XN)~PN (AO’)Z. (11)

The numerical solution of the ray tracing system can be carried out, with controlled accuracy, using
different techniques such as the Runge-Kutta method and Hamming’s predictor-corrector method.
Iterative scheme 9 and 10 are a kind of the symplectic Runge-Kutta schemes, and we use a forth order
Runge-Kutta solver to determine rays.

3. Theory of fast marching eikonal solver
The fast marching method is using the fact that the direction of the energy propagation
follows the group velocity equation, similar to a ray perpendicular to the wavefronts, which is defined
by the phase velocity and it is called the traveltime gradient. We use equation 1 and 4 for ray tracing in
locally homogeneous cells needed in this algorithm. An attentively selected order of traveltime
evaluation is the main advantage of the fast marching method. While the algorithm is proceeding in a
certain step, every grid point is labelled as either Alive (already computed), NarrowBand (at the
wavefront, pending evaluation), or FarAway (not touched yet). In other words, at the beginning of the
evaluation, the source positions are considered as Alive, and the time at these points is set to zero. A
continuous band of points around the source are taken as NarrowBand, and their traveltime are
computed analytically. Other points in the grid are marked as Fardway and have an “infinitely large”
traveltime value [16]. The algorithm includes the following main steps:
1. Finding the point with the minimum traveltime among the NarrowBand points.
2. Label this point as alive.
3. Check all the immediate neighbors of the minimum point and update them if necessary
4. Repeat the procedure.
For updating, one to three neighbour points are selected which the traveltime values of them need
to be smaller than the current value. After choosing the points, the below quadratic equation
ti—tj
5D =5t (12)
should be solved for the updated value t;. t; are the traveltimes at the neighbouring points, s; is the
slowness at the point i, and Ax;; is the grid size in the ij direction. The equation 12 is a finite difference
approximation to the anisotropic eikonal equation [17]
vT

vz(ﬁ,X) IVT|? = 1 (13)
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where X is a point in space, T(X) is the traveltime at that point for a given source, and v(n,X) is the

o L VT
phase velocity in the phase direction n = W

4. Numerical examples

We test the above-described algorithms for isotropic and VTI ray tracing and traveltime computations

in a 2D Marmousi model. The parameters that the Marmousi model (Figure 1) provides are vertical
e-8

velocity Vpy and 1 = Ti25° We use the slowness instead of the velocity to maximally preserve the

traveltime. The study is conducted on the seismic software package of Madagascar [19]. In the first
example for the initial-value ray tracing, the source is located at x=0 km and z=0 km (Figure 2), and in
the second example, the source is located at x=3 km and z=0 km (Figure 3).

We trace rays in the isotropic and anisotropic condition for the both cases. Since the ray tracing
theory imposes some limitations on the subsurface model, to obtain valid rays both the true and an
smoothed velocity model are studied. Smoothing is carried out by applying a tridiagonal 2x2 filter for
three times, and the ray window is 100" with a fan of 50 rays. It can be clearly seen that the rays
traced via the anisotropic approach are well-ordered and smoother which causes a better coverage of
the shadow zones than the isotropic one. Although, by smoothing the velocity, the result of the
isotropic ray tracing is enhanced, the anisotropic rays of the smoothed model have a more reliable
pattern and cover a wider area. We should mention that the anisotropic ray tracing is sensitive to
smoothing and the smoothing parameters should not pass the threshold of the given velocity model.

a.
a. b.
c. d.
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Fiure 2. Initial-value ray tracing at x=0 km: (a) isotropic in the true velocity, (b) isotropic in the
smoothed velocity, (¢) anisotropic in the true velocity and (d) anisotropic in the smoothed velocity.
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Figure 3. Initial-value ray tracing at x=3 km: (a) isotropic in the true velocity, (b) isotropic in the
smoothed velocity, (c) anisotropic in the true velocity and (d) anisotropic in the smoothed velocity.

The results of fast marching eikonal solver are illustrated in Figure 4. The first arrival traveltime
contours are computed in the anisotropic Marmousi model and compared with traveltime contours of
the isotropic Marmousi model. It can be clearly seen that anisotropic wavefronts laterally move faster
than isotropic ones, however the isotropic and anisotropic wavefronts propagate in a same speed
vertically. This difference demonstrates the significance of considering anisotropy in imaging.
Ignoring the shift in wavefronts position can cause error in positioning.
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Figure 4. Fast marching traveltime contours in: (a) isotropic Marmousi model, (b) anisotropic
Marmousi model. (¢c) Comparison of isotropic and VTI traveltimes indicates a considerable difference
between isotropic and anisotropic results.

Eventually, we present a comparison between VTI ray tracing and VTI fast marching methods
(Figure 5). First, the exact solution and ray tracing result are overlaid to find out the accuracy of ray
tracing approach. The overlaid figure shows overlapping the ray tracing approximation and exact
solution which means a great accuracy for ray tracing algorithm. Then a same procedure is performed
for fast marching result which indicates an small error for contours far from the source position,
however, for near distances, the accuracy is high. Finally, we overlay the contour of both approaches.
We can conclude that although applying the ray tracing technique is challenging in complex velocity
models and is time consuming, it remains more accurate than finite difference technique in near and
far offset.
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Figure 5. Comparison of VTI traveltime contours between: (a) initial-value ray tracing (solid red) and
exact solution (dashed black), (b) fast marching method (solid blue) and exact solution (dashed black),
and (c) initial-value ray tracing (dashed red) and fast marching method (solid blue).

5. Conclusions

We studied two techniques of initial-value ray tracing and fast marching eikonal solver in isotropic
and vertical transverse isotropy (VTI) media, and we compared the results for more evaluation. The
rays traced via the anisotropic approach are well-ordered and smoother which causes a better coverage
of the shadow zones than the isotropic one. Fast marching method proved that anisotropic wavefronts
laterally move faster than isotropic ones, however the isotropic and anisotropic wavefronts propagate
in a same speed vertically. This difference demonstrates the significance of considering anisotropy in
imaging. Despite the high accuracy of the ray tracing algorithm to compute the traveltime and
providing the multiple arrivals, applying it in complex media is a challenging task and makes it
excessively expensive for large-scale applications. On the other hand, the finite difference approach is
fast and robust to define the traveltimes even in rough velocity media, though they only acquire first
arrivals. Overall, since the ray tracing results are biased by the initial conditions and they are not
deterministic explanations to problems, we cannot consider it as a long term solutions.
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