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Abstract. We present a numerical simulation of non-Newtonian fluid flow in a two-
dimensional fracture network. The fracture is having constant mean aperture and bounded with
Hurst exponent surfaces. The non-Newtonian rheology behaviour of the fluid is described using
the Power-Law model. The lattice Boltzmann method is employed to calculate the solutions
for non-Newtonian flow in finite Reynolds number. We use a constant force to drive the fluid
within the fracture, while the bounceback rules and periodic boundary conditions are applied for
the fluid-solid interaction and inflow outlflow boundary conditions, respectively. The validation
study of the simulation is done via parallel plate flow simulation and the results demonstrated
good agreement with the analytical solution. In addition, the fluid flow properties within the
fracture network follow the relationships of power law fluid while the errors are becoming larger
if the fluid more shear thinning.

1. Introduction
The study of fluid flow through fracture system is encountered in many industrial problems,
such as solute transport problem [1, 2], enhanced oil recovery (EOR) [3] and many more.
Solute transport in rock fractures are great attention for environmental problems, for instance
remediation of contaminated of groundwater flow. In EOR processes, the non-Newtonian fluids
like polymer and surfactant are play important roles to enhance the oil productivity. In those
cases, the analytical solutions do not exist due to the complexity of the flow, hence the numerical
simulation is promising tool to estimate the physical behavior of the system.

We employed a lattice Boltzmann method (LBM) for the simulation of non-Newtonian
fluids. Recently, LBM has long standing good achievements for solving Navier-Stokes equations
including heat transfer problems [4]. Compared with other traditional method like finite
difference and finite element method, LBM is based on kinetic theory approach, hence it has
some advantages especially when we deal with some complicated transport system in complex
geometries [5]. On the other hand, LBM algorithm is also easy for parallel computation [6].

In this paper, a non-Newtonian fluid based on LBM model will be implemented in a fracture
network. The power law rheology model is used to describe the non-Newtonian properties of the
fluid [8, 9]. The self-affine fracture network was generated by performing fractional Brownian
Motion (fBM) method which proposed by Madadi et al [7]. Hence, it can capture the surface
roughness of the natural fracture by including the fractal dimension. While, the LBM simulations
of Newtonian flow for this system has been clearly discussed in [10, 11, 12]. The objective of
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the present work is to analyse numerically of the flow velocity, shear stress and viscosity and its
dependence on the fluid rheology and the fracture geometry effect.

2. The lattice Boltzmann method
The LBM method was developed as an alternative tool for Computational Fluid Dynamics.
LBM consists of discrete particles with particular velocities. The particle distribution functions
is defined as fi(~x, t), where ~x and t is position vector and time, respectively. The subscript i is
the lattice link of the distribution function. During simulation, the particles will propagate and
collide in a regular lattice. The distribution functions will evolve and interact in such way that
that mass, momentum and energy are conserved.

The evolution equation of the LBM is defined as [13]

fi(~x+ ~ci∆x, t+ ∆t) = fi(~x, t) + Ωi(~x, t) (1)

Here, in this paper we consider D2Q9 lattice, where D2 indicates for two dimension and Q9
indicates for nine velocity vectors. The discrete velocities for this lattice are the following

~ci = (0, 0); i = 0
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π

2
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π

2
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The Ωi is the collision operator. For this simulation, we use Bhatnagar-Gross-Krook collision
operator [14]

Ωi =
−1

τ
[fi(~x, t)− feqi (~x, t)] (3)

while τ is the time of relaxation. The equilibrium distribution function feqi is given by

feqi (~x, t) = ωiρ

(
1 + 3~ci · ~u+

9

2
(~ci · ~u)2 − 3

2
~u2
)

(4)

where ω0 = 4
9 for i = 0, ω1 = 1

9 , for i = 1, 2, 3, 4 and ωi = 1
36 for i = 5, 6, 7, 8. The macroscopic

fluid parameters like fluid density ρ and velocity ~u can be calculated from the distribution
functions at each node by

ρ =
∑
i

fi and ρ~u =
∑
i

fi~ci (5)

The kinematic viscosity is related with relaxation time, which defined as

ν =
1

3

(
τ − 1

2

)
(6)

The relation between stress tensor σαβ and the strain rate tensor Dαβ for incompressible fluid
is given by

σαβ = 2µDαβ (7)

The local viscosity µ is the a function of the invariants of the strain rate tensor. Here we use
power law fluids, the viscosity is defined as

µ = mγ̇n−1 (8)
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where m and n are some constants, when n > 1 the fluid is categorized as shear-thickening fluid,
when 0 < n < 1 is categorized as shear-thinning fluid and when n = 1 the fluid is Newtonian.
The local shear rate γ̇ is then defined as

γ̇ = 2
√
DαβDαβ (9)

in LBM the strain rate tensor is given by

Dαβ = − 3

2ρτ

∑
i

(fi − feqi )ciαciβ (10)

which is equal with equation 7.
For the validation study, we set the pressure gradient ∇P = G in the x-direction, and with

power law parameters m and n > 0, in a channel width d, we will have the analytical solution
of the velocity as

ux(y) =
n

n+ 1

(
G

m

)1/n
(∣∣∣∣d2

∣∣∣∣(n+1)/n

−
∣∣∣∣d2 − y

∣∣∣∣(n+1)/n
)

(11)

3. Results and Discussion
3.1. Parallel plate validaton
The LBM was implemented on parallel plate for numerical validation. Simulation were run at
low Reynold’s number to ensure the flow is in laminar regime. The parameter n was varied to
capture the shear thinning and thickening properties. We applied the bounceback rules for solid-
fluid interaction, while Zou-He boundary conditions are applied for inlet and outlet flow [15].
The results displayed in Figure 1, it showed that the numerical solutions (marked) agreed very
well with the analytical solutions (solid lines) Equation 11 for different n. We set G = 1.0×10−6

and m = 0.02 for validation study.

Figure 1. Velocity profile for flow in parallel plate for different n

3.2. Flow in fracture network
Our simulation are performed on the two-dimensional fracture network having size 342 × 680 in
lattice unit. The fracture network geometry is developed using fBM method [7]. In this study
we set the surface roughness H = 0.8 which is illustrated in Figure 2 and Figure 3. The fracture
network was developed in such a way that they have same mean apertures for each branches.
The power law fluid parameters are set with three different n (0.6; 1.0 1.5). Additional layer
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was added in inlet and outlet in order to perform periodical boundary conditions. The steady
state conditions are reached after 50 000 iterations.

Figure 2. Velocity field (a) and viscosity profile (b) for fluids flowing through the fracture
network with n = 0.6

Figure 3. Velocity field (a) and viscosity profile (b) for fluids flowing through the fracture
network with n = 1.5

Figure 2 presents velocity and viscosity distribution for shear thinning (n = 0.6) fluid. The
velocity profile has power-law fluid with viscosity, i.e. the higher shear rate, the lower viscosity.
The red colour indicates the higher value while the blue is lower, this means the fluid will
preferably flow in non-blue regions. In shear thickening fluid, the relationship between the
velocity and viscosity is vice versa with the previous case as shown in Figure 3. This corresponds
very well with the relationships of power law fluid. We then calculate the fluid flux for different
constant pressure gradient. The slopes are tabulated in Table 1 and the plot is shown in Figure
4.

Table 1. Slopes from plots of log[u] vs. log[G]

n 1/n slope % Error

0.6 1.6667 1.35576 0.18
1 1.0000 1.0000 0.00
1.5 0.6667 0.6667 0.00

Figure 4 shows the plot of log[u] versus log[G] for this simulation with different n. The error
for Newtonian and shear thickening flow is less than 1%. Error increases with decreasing n or
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Figure 4. Logarithmic plot for the flow rate (log[u]) versus pressure difference (log[G]) for
non-Newtonian flow with different n

fluid become more shear thinning. In power-law fluid model the problem may arise if the local
strain-rate produces very small number or even zero, this only happen when n <1 because the
local viscosity will grows up into very huge number and then we get inaccuracy results. On the
other hand, the strain rate in shear thickening fluid is more distributed within the fracture and
the local viscosity produces moderate values.

4. Conclusion
The power law non-Newtonian fluid flow in fracture network was studied numerically using
lattice Boltzmann method. The flow rate through the fracture network is linear proportional to
the logarithmic applied pressure difference. The Newtonian and shear thickening flow produced
consistent results with theory, while for shear thinning flow the low shear rates contribute to
the inaccuracy results.
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