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Abstract. Among the hazardous hydraulic conditions affecting anadromous and resident
fish during their passage though hydro-turbines two common physical processes can lead to
injury and mortality: collisions/blade-strike and rapid decompression. Several methods are
currently available to evaluate these stressors in installed turbines, e.g. using live fish or
autonomous sensor devices, and in reduced-scale physical models, e.g. registering collisions
from plastic beads. However, a priori estimates with computational modeling approaches
applied early in the process of turbine design can facilitate the development of fish-friendly
turbines. In the present study, we evaluated the frequency of blade strike and rapid pressure
change by modeling potential fish trajectories with the Discrete Element Method (DEM) applied
to fish-like composite particles. In the DEM approach, particles are subjected to realistic
hydraulic conditions simulated with computational fluid dynamics (CFD), and particle-structure
interactions—representing fish collisions with turbine components such as blades—are explicitly
recorded and accounted for in the calculation of particle trajectories. We conducted transient
CFD simulations by setting the runner in motion and allowing for unsteady turbulence using
detached eddy simulation (DES), as compared to the conventional practice of simulating the
system in steady state (which was also done here for comparison). While both schemes yielded
comparable bulk hydraulic performance values, transient conditions exhibited an improvement
in describing flow temporal and spatial variability. We released streamtraces (in the steady
flow solution) and DEM particles (transient solution) at the same locations where sensor fish
(SF) were released in previous field studies of the advanced turbine unit. The streamtrace-
based results showed a better agreement with SF data than the DEM-based nadir pressures
did because the former accounted for the turbulent dispersion at the intake using an empirical
method, but the unsteady simulation underestimated turbulence in the intake. However, the
DEM-based strike frequency is more representative of blade-strike probability as compared to
the steady solution, mainly because DEM particles accounted for the full fish length and width,
thus resolving (instead of modeling) the collision event. Although further development and
testing is needed, the DEM method shows promise as another tool in the engineering design
process to develop turbines that can achieve fish-friendly hydraulic conditions.

1. Introduction

The environmental impacts of hydroelectric dams have long been recognized, studied, and,
guided by research, mitigated by the hydropower industry in many cases. Various strategies to
reduce the negative impacts of dams on aquatic biota, and on fish in particular, are commonly
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analyzed and implemented at many hydropower installations in the U.S. and the developed
world. For instance, spillways, bypass systems, and fish transportation are alternatives to
turbine passage that can be safer, in some cases, for fish passage past dams during downstream
migration [1]. However, some fraction of the fish population inevitably travels through the
turbines, potentially encountering hazardous passage conditions [2,3]. For that reason, field
tests of fish survival through operating turbine units are being conducted in river systems with
hydropower production, such as the Columbia river extending over the U.S. Pacific Northwest
and Canada (see [4] for an example). Field evaluations are desirable but must be conducted
after the turbine is designed, installed, and placed in operation. Thus, numerical model-based
estimates of the hazardous conditions, based on laboratory experiments of fish response to
hydraulic stressors found in turbine flows, would be advantageous considering the effort involved
in preparing and conducting field tests. The present study uses advanced turbulence and particle
modeling schemes to evaluate the blade strike frequency and nadir pressure environment that
juvenile fish may potentially encounter in a Kaplan turbine at a typical operating point.

The main objective of this work was to determine the quantitative impact that two particle
modeling schemes, Lagrangian spheres and Discrete Element Method (DEM), have on estimating
the biological performance of a full-scale hydropower turbine. Figure 1 shows the steps followed
to achieve the stated objective. To begin with, we conducted CFD flow simulations with two
turbulence modeling approaches: Reynolds-averaged Navier-Stokes (RANS) and detached eddy
simulation (DES). Next, we compared the simulated outcomes to plant estimates of power output
and net head from the turbine. The predicted hydraulic conditions were then used to determine
potential pathways of a fish sample during passage (see examples in figure 2). Three modeling
techniques were used to the latter purpose: streamtraces through the RANS solution, and both
Lagrangian and DEM particle tracking through the DES results. These trajectories provided
the input information to quantify the magnitudes of two injury mechanisms affecting fish during
passage: blade-strike and rapid decompression. The former risk was quantified as the frequency
of strike events recorded from a passed fish sample, whereas the latter was evaluated as the lowest
(nadir) pressure along each modeled trajectory. In previous studies of biological performance,
the origin of the fish particle —streamtrace or particle — has been a key variable that affects the
outcomes of biological performance assessments [5]. Therefore, we released particles from the
same location of injection pipe outlets from which live and sensor fish were previously released
in field tests at the same dam, for the same turbine, and the same flow conditions as those used
in this study. In this way, we were able to directly compare the simulated stressor magnitudes
against sensor fish data previously reported and published [4, 6].
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Figure 1. Workflow to determine the influence of turbulence modeling on the hydraulic and
biological performance of a hydropower turbine.
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2. Flow Modeling Approaches

2.1. Field conditions and Turbine Unit Description

The Wanapum Dam, owned and operated by Public Utility District No.2 of Grant County, is
located on the Columbia River in central Washington State, at river km 668 where the annual
average discharge is 3398 m3/s. Wanapum dam has been in operation since 1963, and the
original 10 Kaplan turbine units began to be replaced in the mid-2000s to improve both the
hydraulic and environmental performance. In this study, we studied a single unit of the new
advanced turbine type designed and manufactured by Voith Hydro, which consists of a six-blade
turbine with spherically-shaped hub and discharge ring to minimize gaps that are known to be
hazardous to fish passage and detrimental to power generation efficiency. A description of the
advanced turbine in the context of recent trends in environment-friendly hydropower turbines
is provided in a recent review paper [7].

The simulated system included the turbine runner, as well as the intake and draft tube (see
figure 2). The intake features a distributor with 32 wicket gates and 16 stay vanes to guide
the incoming flow into the turbine. The design of the draft tube was also enhanced during the
turbine replacement to reduce flow recirculation and other energy losses that directly impact
the unit hydraulic efficiency.

A discharge (Q) of 472.13 m3 /s and gross head of 23.45 m were selected as the operating point
for the simulations. At these conditions, the field estimate for net head was 22.95 m, for shaft
output power was 99.14 MW, and for unit efficiency was 93.3%. The Wanapum turbines have
been field tested using sensor fish devices [8,9]. In addition, balloon tagged live fish were used to
estimate the direct survival associated with turbine passage [10]. Detailed information regarding
the site, the turbine unit,and the hydraulic test conditions has been previously reported by [4].
We simulated one discharge scenario included in these field studies, denoted as the “17 kefs”
nominal discharge case. The CFD models were run using the gross head differential between
the forebay and tailrace water elevations as the boundary condition driving the flow.

Figure 2. The model included the six-bladed Kaplan turbine, as well as the intake and draft
tube (left), and streamtraces starting from the field test release pipes located in the intake
showing the six injection locations (right).

2.2. CFD: Reynolds-Averaged Navier-Stokes
Steady-state turbine flow conditions were simulated in a full-scale model of the turbine system.
The commercial code STAR-CCM+ v8 [11] was used to generate an unstructured mesh with
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34.3M primarily hexahedral cells to discretize a domain divided into three regions: intake,
runner, and draft tube/exit (figures 2). The cell allocation varied per region: 13.6M, 14.0M,
6.7M cells, respectively. The cell density varied spatially within each region, with more cells
located near the walls to capture large flow gradients in the boundary layers. The averaged y*
value for the first layer of cells off the wall was ~20 on the blade surface. The intake region
included the stay vanes and wicket gates, as well as a porous baffle representing the pressure
drop from the trash racks. A moving frame of reference was applied at the runner region to
account for the runner rotation, with a rate of 8.98 rad/s (85.7 RPM). The transition between
this moving reference frame and the stationary frame of the draft tube was represented by
an indirect interface scheme in which the flow quantities were circumferentially averaged as
commonly practiced in steady-state turbo-machinery applications. The flow rate resulted from
setting up a pressure differential between the inlet and outlet boundaries equal to the gross head
from the field data (23.45 m). The segregated flow solver used a 2"%-order discretization scheme
for the convection term, and the k-w SST turbulence model was used to compute the Reynolds
stresses from the eddy viscosity. The pressure drop through the interface representing the trash
racks followed the conventional two-term formulation with a porous internal resistance of 0.051
but no viscous resistance, and a porosity of 82.5% derived from the ratio of the “open area”
projected on the x-direction to the total trash rack area (height x width). A mesh sensitivity
test of the model was conducted with sizes of 1.3M, 2.5M, 6.9M, 28.0M and 34.3 cells. No
significant difference in bulk hydraulic performance was observed from the RANS simulations
with the two densest grids, and the latter (34.3M) was selected because of the need for spatial
refinement in corresponding transient DES runs.

2.3. CFD: Detached Eddy Sitmulation

Transient turbine hydraulics were simulated using the DES version of the x-w SST turbulence
model in STAR-CCM+. Although the geometry, boundary conditions, flow solver settings, and
other features remained the same as for the RANS simulation, the DES run had additional
requirements over the RANS counterpart. For instance, modeling the potential interactions
between real-size fish DEM particles and an actual operating turbine required the runner region
be set as a rigid body in rotating motion using sliding mesh interfaces between the stationary
intake and draft tube zones. This in turn required the solution timestep be constrained by
the Courant number in the form X80 ~ 1, which resulted in At = 0.005 s for the blade
tip velocity (V4ip) and the averaged cell size (Ax) interfacing between the moving runner and
stationary regions. The flow simulation was warmed up over a period of 60 seconds until a
statistical average was reached, and then particle tracking was conducted over 60 additional
seconds of simulation time.

3. Fish Passage Modeling Approaches

CFD-simulated flow conditions aided in the evaluation of fish exposure to two stressors that are
known to cause mortal injury during passage: blade-strike occurrence and rapid decompression.
Flow simulations provided the input data to calculate the potential fish pathways during passage
through the hydropower turbine. Using these pathways, two quantities were determined: (a) the
interactions between the fish-like particles and the rotating blades were recorded, and (b) the
lowest pressure along each calculated trajectory was sampled. This scheme has previously been
used with streamtraces generated for steady-state, RANS flow solutions [5,12]. Figure 2 shows
an example of three streamtraces through the unit. With a transient, DES-based flow solution,
we aimed at achieving two enhancements: first, the strike event with particles is explicitly
resolved instead of being modeled with a probabilistic formulation, and second, the unsteady
results provide a better description of the transient turbulent conditions, compared to a steady
RANS solution.
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Juvenile salmonid fish are subjected to potential mortal injury as they pass through turbines
during their downstream migration. We assumed a generic fish length (L) of 10 ¢cm and a
mass (m,,) of 14 g as representative of juvenile salmonids [13]. In representing a fish body, the
modeled particle can vary in complexity and shape, which in turn have an influence on the
computational expense to determine the fish pathways (see figure 3). In this study, we modeled
the fish body (fig. 3a) using the following methods (listed in decreasing modeling complexity):
a composite particle for discrete element modeling or DEM (fig. 3b), a spherical Lagrangian
particle (fig. 3c), and an advected massless particle (fig. 3d). The stressor statistics (blade
strike and nadir pressure) are very sensitive to the release location of these model particles.
We released the particles from seeds located at six pipe exits from which sensor and live fish
were also released in the field tests [4,6]. Three release points are located at each bay center
3.04 m below the intake ceiling (“10-ft pipes”), while three more are located 9.14 m (“30-ft
pipes”) below the turbine ceiling (figure 2). In this work, we grouped the modeling results per
“pipe-elevation” to establish direct comparisons to the sensor fish data provided from previous
work [4,6]. These past studies include details of the field conditions as well as descriptions of
the sensor fish data used in this work.
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Figure 3. The representation of 10-cm juvenile fish (a) depended on the modeling scheme for
fish particles: (b) a composite particle was used in DEM, (c) a material particle was used in the
Lagrangian scheme, and (d) a massless particle was advected to determine streamtrace-based
pathways

3.1. Streamtraces

The simplest way to numerically represent fish paths is as a massless particle (fig. 3d) seeded at
the release points and advected through the domain, assuming that the particle velocity (u,) is
equal to the flow velocity (@). This pathway represents a case in which fish are passively carried
along with the flow, with no drag, no lift or any other body or surface force acting on the fish.
In this strategy, the data analysis package Tecplot360”™ (Tecplot, Inc., Bellevue, Washington)
was used to calculate the streamtraces, and to conduct the sampling of nadir pressures and the
modeling of strike probability. A major assumption from this method is that only the leading
edge of the blade contributes to the strike probability. Previous studies included the details of
the modeling procedure and underlying assumptions, as well as the seeding strategy in the case
of a few discrete release locations such as in this application. A sample of seeds surrounding
the release pipe is run to conduct the statistical analysis. More information can be found in
previously published documents [5,12]. Streamtraces were computed using the steady RANS
flow solution.

3.2. Lagrangian Particles

Fish represented as spherical Lagrangian particles with mass (fig. 3c) add additional physical
realism compared to streamtraces albeit at increased computation effort. Lagrangian particles
are not simply passively advected through the flow but instead, the particle velocity (i) is
determined by solving an ordinary differential equation (equation 1) that includes the fluid
forces acting on the particle such as drag (Fy), pressure gradients (F)), virtual mass effects
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(Fum), and gravity (Fy) when fish are made non-neutrally buoyant. The detailed formulation
for each force can be found in the STAR-CCM+ code documentation [11]. A neutrally buoyant
sphere must be 3 cm in diameter to obtain the target fish mass (m, = 14 g).

Spheres were injected from the release points over a period of 20 seconds, at a rate of 8
particles-per-second per injection point, for a total of 960 spheres (480 per “pipe elevation”).
The absolute pressure of the surrounding fluid is recorded along the particle trajectory. A
boundary sampling scheme recorded the interactions between the spheres and blade surfaces.
These interactions represented strike events. The boundary sampling included other quantities
associated with the strike event such as its location, impact velocity, residence time, etc.
This information is relevant to conduct future studies of mortality associated with the strike
conditions. However, the latter analysis is not included in the present work. From the Lagrangian
particle solver, we determined the strike frequency (Fj.4) as the ratio of number of striking
particles to the number of released particles. A particle with multiple strike events counts as a
single striking particle.

du _ _ _ _
mpditszd‘{'Fp‘}'va‘i‘Fg (1)

3.8. Composite Discrete Element Method Particles
The next level of fish representation corresponded to a discrete element particle that spans
the target fish length (L) by compositing a number of spherical sub-particles (fig. 3b). The
tracking algorithm for composite particles is conceptually the same as for spherical particles:
a momentum balance equation is solved, the fluid forces determine the particle motion, and
the interactions between particles and blade surfaces can be recorded to detect strike events.
However, the DEM particles add a number of advantages over spherical particles: the fish length
—known to be important in fish passage survival— is fully represented, interactions between
the blades and any contact point of the DEM particle surface —as opposed to only the centroid-
blade interactions as with spheres— are detected, and the angular momentum balance equation
solves for the particle orientation. The latter 6 degree of freedom (6DOF) feature is particularly
beneficial because fish orientation has been observed to be critical in estimating fish survival
during blade strike [4,14-16]. The formulation of each force term in equation 1 is modified to
account for the composed shape of the DEM particle by including the concept of sphericity.
Details can be found in the code documentation [11].

The DEM particle injection strategy is the same as for spherical particles, and the strike
frequency (Fyen,) is also the ratio of the number of striking DEM particles to the number of
released DEM particles. A particle with multiple strike events counts as a single striking particle.

4. Results and Discussion
4.1. Simulated flow conditions: RANS vs. DES
Figure 4 shows a qualitative comparison of the flow conditions arising from both turbulence
modeling schemes. Both figures show the iso-surfaces of Q-criterion at 10 s~2 in the draft tube,
as calculated from the steady RANS and an instantaneous time slice from the transient DES.
The Q-criterion [17] is a numerical quantity used to visualize the vortex rope developing under
the hub as the fluid begins to diffuse into the draft tube. Both the RANS and DES solutions
exhibit the vortex rope, but the qualitative appearance in RANS suggests that the instability
remains contained within a smaller volume, and that the flow mixing takes place more rapidly,
as compared to the DES solution.

Although not shown here due to the limited space, other visualizations of 3D vortices and
2D-contours on plane sections reinforced the point that a DES solution yields a much richer
description of the flow conditions than the RANS solution. In terms of the unit hydraulic
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Figure 4. Isosurfaces of Q-criteria in the draft tube show the qualitative differences arising
from the RANS and DES schemes for turbulence modeling

Table 1. CFD-simulated and plant estimated values of averaged metrics of hydraulic
performance

Discharge, m®/s Power, MW Net head, m Efficiency, %

Plant estimate 472.13 99.14 22.95 93.27
RANS 476.77 98.86 23.22 91.25
DES 476.74 98.19 23.22 90.65

performance, Table 4.1 lists the discharge, output shaft power, net head and efficiency from the
modeling results and the plant estimates. Here we recall that the modeling strategy in CFD
was to prescribe the differential pressure between the upstream and downstream water surfaces
(gross head) to drive flow through the system. With respect to plant estimates, the modeling
results show an increase of 1% in discharge, an increase of 1% in net head, and a decrease of the
unit efficiency by 1.5-2.5%. The power values are essentially the same between the field data and
RANS results, and a slight decrease was observed from the DES solution. Given the extent of
the domain, the computational resources, and the potential absence of minor geometry features
that may impact the hydraulic metrics, we judged both methods to produce results of similar
quality from the standpoint of bulk hydraulic performance metrics.

Both RANS and DES produced similar levels of TK E}yq; (in J/kg), with values in the order
of 1075 at the release points, 1072 near the stay vanes and wicket gates, 10~ underneath the
runner, and greater than 1.0 in the draft tube. In terms of the turbulence intensity, averages from
the solution sampling probes were in the order of less than 1%, 5%, 3% and 40%, respectively.
The trends of TKE and turbulence intensity indicated that the turbulent conditions increased
as the fluid moved downstream. The low turbulence at the intake emerged from representing
the trash racks as baffles with uniform porous characteristics that generated a pressure drop but
very little turbulence, and from not including the test fish release structure actually in place
during the field tests and plant estimates. These simplifications will be revisited as part of the
future work because they not only have an impact on the turbulence conditions prevailing at the
intake, but also have implications on the dispersive motion of particles that are used to evaluate
biological performance, as will be discussed below.
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4.2. Blade-strike frequency and nadir pressure

The sensor fish (SF) strike events were categorized into severe (Sv), medium (Md), and slight (SI)
strikes based on an algorithm that accounted for the intensity and time span of the acceleration-
deceleration spikes during a collision [6]. The SF device does not record the position and
trajectory of the instrument during passage, and the “runner” strikes are estimated by means
of post-processing the acceleration and pressure time series retrieved from each device [4].
Therefore, SF strikes could also include strikes on the hub and the discharge ring. Figure 5
shows the results from all the evaluation methods, per pipe-elevation. All modeling methods
predicted greater blade-strike frequency from 10-ft pipe releases than from 30-ft pipes; however,
only the all-inclusive SF data set (Sv+Md+Sl) showed a similar pattern. The other SF data
groups exhibited the opposite trend. Because the modeled results include all collisions, it is
more likely that the results from the DEM and spherical particles were more consistent with the
all-inclusive SF data group. One major difference between the data sources is that the SF-based
probability accounted for single and multiple collision events from the same device, whereas the
modeling approaches used a single (the first) registered collision to determine a striking particle.
From all the modeling approaches, streamtraces feature the smallest difference between the pipe
release groups. However, the streamtraces model the probability of strikes only at the blade
leading edge while the DEM particles and spheres record collisions over the entire blade surface,
hub, and discharge ring.
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Figure 5. Strike frequency from all the methods, for both release pipe elevations. Sensor fish
data classified by Sv = Severe; Md = Medium; Sl = Slight.

Finally, the distributions of nadir pressure recorded from the SF devices and sampled from
the three modeling methods are compared in Figure 6 from both pipe-elevation groups. Three
observations are noteworthy: first, the simplest modeling technique (streamtraces) showed the
best agreement with the SF data; second, DEM particles and spheres display very similar
pressure exposures, and third, the three modeling techniques yield, in general, greater values of
nadir pressure than SF data. For the first observation, the streamtrace-based method accounted
for the circumferential and vertical variability of streamtraces arriving at the stay vanes and
wicket gates by applying an algorithm that “spread” the streamtraces to mimic the effect of
turbulent dispersion; otherwise, the pipe releases would result in a single passage trajectory
through the turbine system. The DEM particles and spheres do account for such turbulent
dispersion, but they disperse less than the streamtraces because they are only slightly affected
by intake turbulence during the travel from release to the runner, owing to the low TKE
and turbulence intensity levels in the intake. This resulted in the second observation, i.e.
similar nadir pressure distributions emerged from the DEM particles and spheres. For the
third observation, the absolute pressure from all the modeling schemes is currently adjusted
by using the average downstream water surface elevation and atmospheric pressure over all the
entire period when field tests were performed. In reality, the water surface elevation in the
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field may be fluctuating and this should be accounted for in a revised estimate of the absolute
pressure as part of the work currently in progress to enhance our understanding of the pressure
environment in the system.
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Figure 6. The distribution of nadir pressures from all modeling approaches and SF data, from
the “10-ft” (left) and “30-ft” pipe elevations (right)

5. Conclusions and Future Research

This work presented a numerical modeling approach to evaluate the frequency of fish striking
moving turbine blades and the distribution of nadir pressures to which a fish may be subjected
during turbine passage. The method consists of two main steps: flow description using CFD
and fish path estimation using particle tracking. We tested the sensitivity of results to: flow
simulation with RANS and DES, and trajectory tracking with streamtraces, Lagrangian, and
DEM particles. The streamtrace-based outcomes agreed better with field measurements of nadir
pressure than the DEM and spherical particles. This appeared to be mostly due to the turbulent
dispersion in the intake accounted for in the former but not in the latter. However, DEM particles
offer more advantages to evaluating blade-strike frequency compared to streamtraces because
the former account for the mass, full fish length, and width thus resolving (instead of modeling)
the collision event.

This research work developed modeling capabilities to estimate biological performance a
priori, an assessment increasingly necessary for the design of fish-friendly hydropower turbines,
and for operation license renewals. We introduced a number of alternatives, compared them
to fish data, and recognized their advantages and limitations. Because the refinement of the
modeling formulation is still ongoing, the presented findings are not conclusive as to which
method is best for representing the hazardous conditions that fish undergo during passage
through hydro-turbines. It is quite likely that a range of modeling approaches will be needed
for use at different points in the design cycle to balance the desire for greater physical realism
against less computational effort to get faster turnaround times.

Our findings point to the need for including additional vorticity producing structural
components that will potentially increase the level of intake turbulence, namely the trash
racks and test fish release frames. We are currently developing a high resolution model by
incorporating these structures into the geometry and by refining the CFD to yield more resolved
intake turbulence. In addition, the formulation to model drag force and torque in DEM particles
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of irregular shape will be revisited to gain understanding of the fluid forces affecting potential
fish pathways, and ultimately, their ability to survive turbine passage.
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