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Abstract. Hydropower is already the largest single renewable electricity source today but
its further development will face new deployment constraints such as large-scale projects in
emerging economies and the growth of intermittent renewable energy technologies. The potential
role of hydropower as a grid stabilizer leads to operating hydro power plants in “off-design”
zones. As a result, new methods of analyzing associated unsteady phenomena are needed to
improve the design of hydraulic turbines. The key idea of the development is to compute a spatial
description of a phenomenon by using a combination from several sensor signals. The spatial
harmonic decomposition (SHD) extends the concept of so-called synchronous and asynchronous
pulsations by projecting sensor signals on a linearly independent set of a modal scheme. This
mathematical approach is very generic as it can be applied on any linear distribution of a scalar
quantity defined on a closed curve. After a mathematical description of SHD, this paper will
discuss the impact of instrumentation and provide tools to understand SHD signals. Then, as
an example of a practical application, SHD is applied on a model test measurement in order
to capture and describe dynamic pressure fields. Particularly, the spatial description of the
phenomena provides new tools to separate the part of pressure fluctuations that contribute to
output power instability or mechanical stresses. The study of the machine stability in partial
load operating range in turbine mode or the comparison between the gap pressure field and
radial thrust behavior during turbine brake operation are both relevant illustrations of SHD
contribution.

1. Introduction
This article presents a mathematical method that combines information coming from a set of
sensors in order to give a spatial description of the measurement. This method called spatial
harmonic decomposition is first exposed from a theorical point of view. Then, two examples
will be developed. The first one explores load influence on draft tube pulsations in a Francis
turbine. The second one links spatial pattern of vaneless area pressure pulsations to the increase
in radial thrust during turbine brake operation.

1.1. Spatial Patterns
Standard frequency analysis gives an idea of the time coherence of the phenomena but no
information about the spatial coherence. Thus, a distinction between asynchronous and
synchronous pulsations has long been introduced by Nishi et al. in [4] to describe pressure
field around a draft tube cross section. Synchronous pulsations are seen in phase from one
sensor to another whereas asynchronous pulsations are not. According to this definition, a
rotating pressure field gives rise to asynchronous pulsations. A simple mathematical model of a
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rotating pattern prot(α, t) = cos (ωt− kα+ ϕrot) depending on the spatial azimuth α combining
with a synchronous pattern psync(t) = cos (ωt+ ϕsync) at the same pulsation ω is:

ptot(α, t) = psync(t) + prot(α, t)

= real
[(
Asynce

iϕsync +Arote
i(−kα+ϕrot)

)
eiωt
]

= real
[
Atot(α)eiϕtot(α)

]
(1)

This helps to explain why such a combination with the same frequency leads to a deviation in
the amplitudes between sensors (Atot(α1) 6= Atot(α2)) and phase lags that are no more directly
related to the geometrical angular distance between sensors (ϕtot(α1)− ϕtot(α2) 6= α1 − α2).

1.2. Short review of existing decomposition methods
A least three methods have been proposed to separate synchronous from rotating patterns:

(i) With two sensors seperated by 90◦, Nishi et al. still in [4] proposed to extract the rotating
part assuming the equation prot(π/2, t) = prot(0, t− T/4), where T is the rotation period.

(ii) Angelico and Muciaccia in [2] proposed a method called Vectorial Decomposition that takes
advantage of the complex vectorial representation as illutrated in Eq. 1. Indeed the signal
at one given frequency may be seen as vectors in the complex plane whose absolute values
are the amplitude of the signal and whose arguments are their phase lag to a reference. In
this complex plane, a pure rotating pattern is represented on different sensors by vectors
describing a circle whereas a plane wave is a constant vector independent of the azimuthal
position. Thus, Vectorial Decomposition consists basically in finding the circle of the
rotating pattern in the complex plane.

(iii) In the peculiar case where pairs of sensors are diametrically opposed sensors (for example
two pairs at α = {0, π} and {π/2, 3π/2}), Doerfler and Ruchonnet implicitly assume in [1]
that the rotating part verifies prot(0, t) + prot(π/2, t) + prot(π, t) + prot(3π/2, t) = 0.

Spatial Harmonics Decomposition is an alternative to these methods. The leading idea is to
consider a closed curve that links each sensor position.

2. Mathematical considerations
The main purpose of this section is to introduce the mathematical framework necessary to
compute and give the correct interpretation of the decomposition into spatial harmonics of
a phenomenon. The first paragraph deals with abstract considerations. This is to establish
such a decomposition in the most general case: a continuous problem in both space and time
dimensions. Then, these equations are discretized to match with the experimental real life. Then,
a quick overview of the consequences of spatial sampling leads to some basic recommendations
on instrumentation and some keys to understand aliasing.

2.1. Mathematical framework
The key point to introduce the decomposition is to consider that the scalar field we want to study
is defined (or known) along a closed curve. Some mathematical reminders are also necessary.

2.1.1. Prerequisites and reminders: The space L2
τ of the τ -periodic and square-integrable

functions on [0 τ ] is a Hilbert space. It is fitted with an inner product given for any two
elements f and g by Eq. 2:

〈f, g〉 =
1

τ

∫ τ

0
f(x)g(x)dx (2)

The set of functions {en(x) = e
2iπnx
τ , n ∈ Z} is an orthonormal basis of L2

τ . Each element f
of L2

τ can be written as linear combination of en(x), called complex trigonometric polynomial:
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f(x) =

+∞∑
k=−∞

ak· ek(x) ,where ak = 〈f, ek〉 (3)

2.1.2. Defining a closed curve: Let’s introduce the closed curve along which the scalar field
is known. C is a C0 closed curve in an N-dimensional Euclidian space E . C is defined by the
given of C0 periodic function r from R to E . Let’s call τ ∈ R the period of r. C is then defined
by parametrically, with x being the parameter. Note that r is absolutely not unique. Fig. 1
represents such a curve and an associated parametrisation. To simplify the expression of en(x),
it could be useful to subsitute x by a polar equivalent α = 2πx/τ .

2.1.3. Defining a scalar field along C : On the other hand, let U be a differentiable real scalar
field defined on E . It means that there is a function U , C1 from E to R that associates a real
number u to each point p from E : u = U(p). Taking an interest of the restriction U|C of U
along the curve C means considering the function U ◦ r. Fig. 1 gives a representation of what
could be such a distribution, considering the altitude from C to the red curve as an image of
U|C . Considering the τ -periodicity of r, U ◦ r is also τ -periodic.

r(0)
!

RxXXXXXXXXXXXy

Figure 1. The field U along the closed curve C

2.1.4. Spatial projection: Thus U ◦ r is an element of L2
τ and can be decomposed with respect

to the orthonormal basis {en(x), n ∈ Z} described in 2.1.1. In other terms, it can be written as
trigonometric polynomial according to Eq. 4. To simplify notations, let’s pose u = U ◦ r.

u(x) = U ◦ r(x) =
+∞∑

k=−∞
ak· ek(x) ,where ak = 〈U ◦ r(x), ek〉 (4)

Writing u as a trigonometric polynomial allows a geometrical interpretation of the spatial
repartition of the field U|C . As U is a real scalar field, ak and a−k are complex conjugates.
Then, the sum ak· ek(x) + a−k· e−k(x) belongs to R and can be written as follow:

ak· ek(x) + a−k· e−k(x) = 2|ak|· cos

(
2πkx

τ
− kϕk

)
,where ϕk = arg(ak)/k (5)

= 2|ak|· cos (k(α− ϕk)) ,where α = 2πx/τ (6)

This sum describes an harmonic signal whose order is k. The complex coefficient ak contains
both phase and magnitude information. This harmonic is also called a k nodal diameter mode.

2.1.5. Interpretation: It is time to focus on geometrical interpretation of this decomposition.
U|C is now decomposed as a sum of pure harmonic modes whose magnitude and phase
informations are contained in the corresponding ak coefficient. Fig. 2 illustrate this interpretation
describing the two first modes contained in the field represented on Fig. 1.

(i) a0: The coefficient a0 belongs to R. It matches the average value of U ◦ r(x) and then
corresponds to constant amplitude field along C .

(ii) a1: The coefficient a1 and its conjugate complex a−1 describes the shape (magnitude and
position) of the first spatial harmonic mode.
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a0(x)

a1· e1(x) + a−1· e−1(x)

Figure 2. Interpretation of the two first orders

2.1.6. Time projection: Now considering U as a time-dependent scalar field, the spatial
harmonic decomposition leads to the determination of a set of complex signals ak(t) also time-
depedendant. The field U|C can still be written as a trigonometric polynomial in which space
and time variable are separated.

u(x, t) = U(r(x), t) =

+∞∑
k=−∞

ak(t)· ek(x) ,where ak(t) = 〈U(r(x), t), ek(x)〉 (7)

Each of the time-dependent complex coefficients ak(t) contains the phase and magnitude
information regarding the behavior of the harmonic spatial mode that presents k nodal diameters.
Assuming that U is also continuous with respect to the time variable, ak(t) signals are now
compatible with a frequency analysis thanks to continuous Fourier transform. It yields:

ak(t) =

∫ +∞

−∞
âk,ω· eiωtdω ,where âk,ω =

∫ +∞

−∞
ak(t)· e−iωtdt (8)

This next step into the decomposition process leads to a new reduction of U|C into simple
elements. Indeed, the frequency analysis of ak(t) coefficients reduces the behavior of each k
nodal diameter mode into pure rotating or pulsating components. Let’s rewrite the equation of
the synchronous mode a0(t) using the fact that â0,ω = â0,−ω (see eq. 9).

a0(t)· e0(x) =

∫ +∞

−∞
â0,ω· eiωtdω =

∫ +∞

0
2|â0,ω|· cos(ωt+ ϕ0,ω)dω , ϕ0,ω = arg(â0,ω) (9)

Thus, it clearly appears that each element â0,ω of the spectrum of a0(t) represents the
magnitude of a synchronous mode pulsating with the frequency |ν = ω/2π| as described in
[1] . In addition, the peak amplitude of this synchronous pulsating mode is given by 2|â0,ω|. A
spectral representation of a0(t) with a strong emergence at ω1 as shown in Fig. 3 indicates that
the behaviour of the synchronous puslation is dominated by a phenomenon that pulses at ω1.

|â0,ω|

ω1

Figure 3. Spectral representation of a0

As far as other modes are concerned, taking advantages of the fact that âk,ω = â−k,−ω leads
to a new formulation of a k nodal diameters mode equation (Eq. 10):
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ak(t)· ek(x) + a−k(t)· e−k(x) =

∫ +∞

−∞
(âk,ω· eiωt· e

2iπkx
τ + â−k,ω· eiωt· e

−2iπkx
τ )dω

=

∫ +∞

0
2|âk,ω|· cos(ωt+ kα+ ϕk,ω)dω +

∫ +∞

0
2|â−k,ω|· cos(ωt− kα+ ϕ−k,ω)dω (10)

For example, a spectral representation of a1(t) with a strong emergence at ω1 as shown in
Fig. 4 indicates that the behaviour of the first harmonic mode is composed by a scheme rotating
at ω1 rad/s.

|â1,ω|

ω1

99

Figure 4. Spectral representation of a1

Through this writing, each element âk,ω of the spectrum of ak(t) contains the magnitude of
a k nodal diameters mode moving along C with the frequency |ν = ω/2kπ| and the phase shift
ϕk,ω. The peak amplitude of this rotating mode is given by 2|âk,ω|. As ak(t) ∈ C, its complex
spectrum does not present any symmetric property. Therefore, considering both positive and
negative pulsations is necessary. Negative pulsations deals with modes that move in the positive
direction of C (x growing). Positive pulsations deals with modes that move in the negative
direction.

2.1.7. Energetic considerations: From an energy point of view there is an equivalence between
what could be calculated integrated U|C during a time T, its decomposition ak(t) and the
spectrum of this decomposition âk,ω:

1

T

∫ T

0

(
1

τ

∫ τ

0
u2(x, t)dx

)
dt =

1

T

+∞∑
k=−∞

∫ T

0
|ak(t)|2 =

+∞∑
k=−∞

∫ +∞

−∞
|âk,ω|2dω (11)

2.2. Application to experimental processes
The application of the spatial harmonic decomposition on measured datas is relatively simple. It
supposes the implementation of a set of sensors measuring the same quantity and the adaptation
of the mathematical theory developed in section 2.1 to sampled signals.

Let’s consider a set of N sensors placed at different positions cn and call xn the unique
antecedent of cn by r on [0 τ ]. We call a regularly spaced set of sensor an implantation
that satisfies a constant step dx = xn − xn−1 between each sensor position. U|C is no longer
continuously defined but known on a finite number N of positions.

2.2.1. Defining C : Most of the time, the experimenter chooses the most logical curve with
respect to the topology of the problem provided that it passes through all of the sensors.
Regardless of this, the shape of C does not have an impact on the calculation of coefficients,
but modifies the way they are geometrically interpreted. On the other hand, the function r that
parameterizes the curve C has a direct impact on ak(t) = 〈U(r(x), t), ek(x)〉. This is due to the
fact that r could deform the image in E of a pure harmonic mode. Generally speaking, r is
chosen to conserve linearity between [o τ ] and a curvi-linear abscissae of C .
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2.2.2. Calculating ak(t): In the case of a regularly spaced set of sensors, calculating the spatial
harmonics decomposition is simple as it consists in discretizing the formula 2. Thus ak(t) is just
a linear combination of sensors signals.

ak(t) =
1

N

N∑
n=1

un(t) · e
−2ikπxn

τ =
1

N

N∑
n=1

un(t) · e−ikαn (12)

Given the number N of sensors, only a limited number of independent coefficients could be
calculated. This is a classical result regarding sampled data and it will be further discussed
in the section concerning aliasing. This been said, it is important to notice that the spatial
decomposition is a reversible process. It means that, knowing N independent coefficients
ak(t), k ∈ [0 N − 1] allows an exact reconstruction of the signal of each sensor using Eq. 4.

u(xn, t) =

N−1∑
k=0

ak(t) · e
2ikπxn

τ =

N−1∑
k=0

ak(t) · eikαn (13)

2.2.3. Calculating âk,ω: âk,ω coefficients are nothing but a Fourier transform of ak(t). Then the
best way to compute them is to use a FFT algorithm as long as it is compatible with complex
signals. Note that as âk,−ω = â−k,ω, keeping negative pulsations in FFT result is not necessary.

2.2.4. Energetic considerations: The transposition of eq.11 into a discrete form leads to the
following formulation (14) that links RMS (Root Mean Square) estimation of sensors with RMS
of |ak(t)| or |âk,ω| coefficients.

1

N

N∑
n=1

RMS2(un(t)) =
N−1∑
k=0

RMS2(|ak(t)|) =
N−1∑
k=0

+∞∑
ω=−∞

|âk,ω|2 (14)

2.2.5. Spatial aliasing: Using a finite number N of time-sampled signals raises the problem
of space and time resolution. Regarding impacts of time resolution, experimenters are well
informed today and they care to use a suitable sample frequency and anti-aliasing filters.

Regarding spatial sampling of U|C using N sensors, aliasing problem can only be removed by
increasing the number of sensors. But this is often not realistic. Then, the alternative consists
in accepting the problem and studying aliasing consequences in order to separate phenomena
during the analysis. In the case of a regularly spaced set of sensors, spatial aliasing comes from

the periodicity of ek(xn) = e
2iπkxn

τ when xn = nτ/N, n ∈ [0 N − 1]. Then it comes easily an
equivalence between aliasing and congruence relation of orders modulo N :

∀n, ek(xn) = ek′(xn) ⇔ k ≡ k′[N ] (15)

Under these conditions ak(t) = ak′(t). The spatial harmonic decomposition cannot
differentiate a k nodal diameter mode from a k’ nodal diameters mode. It means that the
signal ak(t) contains information of all modes whose order k’ is congruent to k modulo N .

99t
t

t
t

$$t
t

t
t

Figure 5. spatial aliasing situation
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The best way to differentiate them is to compute the frequency components âk,ω of ak signal.
Thus relying on his perspicacity, the experimenter must be able to discriminate most of the time
if the strong emergence at ω is due to a k nodal diameter mode rotating at ω/k rad/s or a k’
nodal diameter mode rotating at ω/k′ rad/s.

2.2.6. Nyquist spatial frequency: This phenomenon occurs only in the case of an even number
of sensors. In both sensors configuration cases, regularly spaced or non-regularly spaced, the
calculation of ak(t) when k ≡ N/2[N ] leads to an indetermination: it is not possible to compute
correctly both phase and magnitude. This constitutes a real leak of information whereas aliasing
is only a mix of information. Fig. 6 shows a situation in which a regularly spaced set of 4 sensors
cannot be used to dertermine phase and magnitude of a second order harmonic scheme.

Figure 6. Second order harmonic indetermination using 4 regularly spaced sensors

2.2.7. Summary and recommendations: In section 2 we established the possibility to project
measurements to a set of pure harmonic modes. It leads to a decomposition of these
measurements into rotating and pulsating elements that allows the identifications of main
phenomenon driving the measured signals. On top of that, further mathematical developments
help to provide some recommendations for the installation of sensors:

• Preferably use an odd number of sensor in order to avoid Nyquist spatial frequency.

• Preferably use a regularly spaced set of sensors to simplify aliasing estimation.

3. Applications to Wall Pressure Measurements
3.1. Draft Tube Pressure Pulsations
The case considered here is a medium head Francis turbine with 15 blades. The SHD has been
applied to experimental records of dynamic pressure from 4 sensors located at the standard cross
section beneath the runner outlet. Data has been processed for different operating points of a
load variation to the head of best efficiency. Furthermore, the turbine model has been operated
at a low Thoma Number and without anti-resonance devices in order to emphasize resonances
and instabilities. The discharge will be expressed with respect to the discharge of best efficiency
Qopt while frequencies are reported relative to the runner rotation frequency f0.

3.1.1. Observed phenomenon : On Fig. 7, RMS values for each sensor are reported alongside
with the waterfall of one sensor. From this waterfall, at least four phenomena can be identified:

(i) The Part Load Vortex Rope (PLVR) with three harmonics. The frequency of the first
harmonic is fPLV R. It is independent of the discharge and equal to approximately 1

4f0.

(ii) The Upper Part Load Resonance (UPLR) with one or two (pseudo-)harmonics. Its
frequencies fUPLR,i strongly depends on the discharge. Additional terms with frequencies
of the form fUPLR,i ± fPLV R related to the vortex rope frequency are also present.
fUPLR,i + fPLV R term has a bigger amplitude than fUPLR,i − fPLV R.

(iii) A High load Instability (HLI) with one harmonic occuring on a narrow range of discharges.

(iv) A Very High Load Instability (VHLI) developed at a main frequency fV HLI .
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Figure 7. On the left: RMS value of the dynamic pressure recorded by four draft tube sensors
as a function of the discharge. On the right, colored waterfall of the magnitude of the pressure
recorded by the upstream sensor as a function of the frequency and of the discharge.

PLVR, UPLR, HLI and VHLI are already known and IEC Code [3] gives examples of such
frequency patterns. Besides the PLVR that is a common feature for all Francis turbines, other
phenomena strongly depend on the runner design and the operating condition.

3.1.2. Application of SHD: SHD coefficients were computed along this load variation. For the
reasons explained in section 2.2, four sensors give only access to P0, P−1 and P1, P−2 and P2.
From an energetic point of view, this decomposition leads to the equivalence:

1

4

4∑
i=1

RMS2(Si(t)) =
2∑

k=−2
RMS2(Pk(t)) (16)

Then Fig. 8 shows the evolution of SHD components along this load variation. A comparison
with sensor’s RMS2 average is also made. From a mathematical point of view this figure
illustrates two results explained in section 2:

Figure 8. RMS values of the
signal before any frequency
decomposition, of P0, P−1, P1

and P2 = P−2
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• The conservation of energy, as described by Eq. 16, imposes that the average energy
measured by the sensors is equal to the sum of the energy of each SHD component. This
equivalence is met from 0.6 Q/Qopt until the maximum discharge.

• Nyquist spatial frequency leads to an undervaluation of the amplitude of the second order
harmonics scheme coefficients P2 and P−2 using four regularly spaced sensors. That explains
the difference between the average energy measured by sensors and the energy contained in
SHD coefficients for discharges lower than 0.6 Q/Qopt.

Regarding pulsating phenomenon described in section 3.1.1, SHD tells us additional
information. Moreover, a frequency analysis on Pk allows a complete description of each of
them in terms of pure rotating schemes:

p(α, t) =

∫ +∞

0
2|P0,ω|· cos(ωt+ ϕ0,ω)dω (17)

+

∫ +∞

0
2|P1,ω|· cos(ωt+ α+ ϕ1,ω)dω +

∫ +∞

0
2|P−1,ω|· cos(ωt− α+ ϕ−1,ω)dω

+

∫ +∞

0
2|P2,ω|· cos(ωt+ α+ ϕ2,ω)dω +

∫ +∞

0
2|P−2,ω|· cos(ωt− α+ ϕ−2,ω)dω

|P0,ω| |P2,ω|

|P−1,ω| |P1,ω|

Figure 9. Colored waterfall of the magnitude of P0, P1, P−1 and P2 as a function of the
frequency and of the discharge. Colors refer to the same scale.
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Waterfalls of P0, P−1, P1 and P−2 = P2 are pictured with the same scale on Fig. 9:

(i) PLVR is mainly caught by antisymmetric scheme P−1 at the frequency fPLV R. It means
that this phenomenon is driven by a one nodal diameter mode rotating the same direction as
the runner at the angular velocity 2πfPLV R

k = ωPLV R. The residual emergence at the same
pulsation on P0 component represents the induced synchronous pulsation as described in
[4]. A much smaller second harmonic is seen on P−2 = P2, which gives it the same angular
velocity as the first harmonic.

(ii) UPLR first and second harmonics are captured by P0. Terms with frequency fUPLR,i +
fPLV R and fUPLR,i− fPLV R (the latter is hardly visible) are registered on respectively P−1
and P1 that links them to the rotating pattern of the vortex rope.

(iii) HLI is exclusively captured by P0. On this model, HLI is actually characterized by an axial
pulsating rope

(iv) VHLI is mainly captured by P0 for its main frequency fV HLI . It has a smaller part on P1

with a band of frequency below 2f0. The fact that VHLI is composed of both a synchronous
and a rotating pattern is an interesting difference with respect to HLI.

The low P0 contribution in the PLVR should be noted. Indeed, this feature should be
correlated with the fact that, usually, PLVR does not generate high torque or power fluctuations
contrary to UPLR or HLI/VHLI which have stronger P0 components.

3.2. Gap Pressure Pulsations
In continuation of what has been done with draft tube wall pressure sensors, SHD can be applied
for detecting occurrences of coherent structures in the vaneless area. Applied to pump-turbines,
this study particularly relates these structures with the detection of high radial thrust in the
area of turbine brake operation called ”S shape”. The tested model is a 9 bladed high head
pump-turbine instrumented with a non-regularly spaced set of 4 sensors located at the same
radius between the stay-vane and guide-vane. The variation follows a constant opening curve
from high to low discharge represented in red on Figure 10. Figure 11 shows a strong emergence
at 0.6f0 on radial thrust Fx spectrum.

Figure 10. Constant opening curves in turbine
quadrant

Figure 11. Appearance of strong rotating
radial thrust seen on Fx component

Exploiting both direction Fx and Fy of the measured radial thrust proves that this emergence
is the image of a rotating thrust which pulsation is approximately 60% of the runner rotation
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speed. Calculating SHD highlights the same emergence on P1(t) only (see fig. 12 and 13)
and describes a pure rotating pressure pattern at the same pulsation. Thus it links the spatial
coherence of the gap pressure field with a mechanical effect. Note that a non coherent pressure
field does not induce radial thrust that could not be seen in analysing sensors separately.

Figure 12. magnitude of P̂−1,ω as a function of
the frequency and the discharge

Figure 13. magnitude of P̂1,ω as a function of
the frequency and the discharge

4. Conclusion and Outlook
The Spatial Harmonic Decomposition is a mathemathical method that allows spatial
interpretation of a measured scalar quantity. In the field of hydraulic machinery, it is a more
general alternative for existing time-space decompositions applied to a network of pressure
sensors since it gives more information about rotating structures. Furthermore, introducing
spatial aliasing and Nyquist frequency gives a new understanding about the number of sensors
and their relative postition required to properly capture rotating patterns.

It has already proved to be very efficient to extend both draft tube and gap pressure pulsations
into meaningful patterns. As it ensures energetic conservation, it could be a very suitable way
to go beyond a simple pressure fluctuation analysis using the peak to peak estimation of each
sensor. Indeed, manufacturers know today how to design machines with low peak to peak
pressure fluctuations but they should more focus on the phenomena that directly affect the
functioning in terms of power stability or mechanical constraints is more relevant. This leads to
a better understanding of operating limits and helps to work on their extension.
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