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Abstract A comparison between results of numerical simulations and measurements for a 3-blade 

bulb turbine is presented in order to determine an appropriate numerical setup for accurate and reliable 

simulations of flow in low head turbines. Numerical analysis was done for three angles of runner 

blades at two values of head. For the smallest blade angle the efficiency was quite accurately 

predicted, but for the optimal and maximal blade angles steady state analysis entirely failed to predict 

the efficiency due to underestimated torque on the shaft and incorrect results in the draft tube. 

Transient simulation with SST did not give satisfactory results, but with SAS and zonal LES models 

the prediction of efficiency was significantly improved. From the results obtained by SAS and zonal 

LES the interdependence between turbulence models, vortex structures in the flow, values of eddy 

viscosity and flow energy losses in the draft tube can be seen. Also the effect of using the bounded 

central differential scheme instead of the high resolution scheme was evident. To test the effect of grid 

density, simulations were performed on four grids. While a difference between results obtained on the 

basic grid and on the fine grid was small, the results obtained on the coarse grids were not satisfactory.   

 

1.  Introduction 

For turbines with small pressure head, such as Kaplan and especially bulb turbines, an accurate 

simulation of flow in a draft tube is more important for accuracy of efficiency prediction than for 

Francis turbines. In years 1999, 2001 and 2005 three workshops "Turbine-99" were performed with 

the aim to gain the knowledge how to perform trustworthy simulations of Kaplan draft tubes. The 

experimental data was provided for a local best efficiency point, which was close to the best efficiency 

of the system. The inlet conditions were provided from experimental measurements by the laser 

Doppler velocimetry (LDV) method. For all tested RANS models, including the SST model, the 

predicted secondary flow was too weak [1]. The best results were obtained by Kurosawa and 

Nakamura [2] using the dynamic Smagorinsky LES model. Apart from the Turbine-99 workshops, 

some other published results outlined the problem of accurate predictions in Kaplan and bulb turbines. 

In a review paper [3] a steady-state prediction of efficiency of an axial turbine with the SST model 

was presented. The discrepancy between numerical and experimental values was increasing with rise 

of runner blade angle. Up to some point, the results were improved by mesh refinement in guide vane 

cascade and runner, because the original mesh was rather coarse with large values of y+. In a recent 

paper [4] about numerical simulations of a Kaplan turbine it was reported that steady state results 

obtained by various turbulence models (k-ε, k-ω, BSL, SST, SSG RSM) were very poor, while 

unsteady simulations considerably improved the accuracy of efficiency prediction. The best results 

were achieved using the zonal LES model, but even the prediction with the transient SST simulation 

was much better than the steady-state SST simulation. The influence of head on numerical predictions 
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for bulb turbines is shown in [5]. At low head the inaccuracy is larger, especially at large runner blade 

angles and large discharge values. 

The purpose of this paper is to extend the conclusions for Kaplan turbines presented in [4] to bulb 

turbines and to check the influence of mesh refinement and the effect of the advection scheme on the 

results. The accuracy of numerical prediction is most critical at low head and therefore a 3-blade bulb 

turbine which operates at extremely low head was chosen as a test case.  

 

2.  Turbulence models and discretisation schemes 

In [4] steady state analysis was done with several RANS turbulence models, such as the standard k-ε 

turbulence model, the Wilcox k-ω model,  the Baseline (BSL) k-ω model, the SST model  and the ε-

based SSG RSM [6]. The best results, which were still rather poor at large discharge values, were 

obtained with SST and SSG RSM. The results obtained with SSG RSM were no better than the results 

of SST. In this paper steady state analysis was done only with SST. For transient simulations besides 

SST, two scale-resolving simulation models (SAS SST and ZLES) were used. In [4] positive effects of 

curvature correction (CC) and Kato-Launder limiter of production term (KL) on accuracy of results 

were found, therefore both, CC and KL, were used in all simulations presented in this paper.  

In the simulations, we used either 'high resolution' or the bounded central difference scheme. 

The high-resolution scheme is a bounded second order upwind biased discretisation. The scheme 

calculates the bounded values based on the procedure of the Barth and Jespersen's scheme [7, 8]. The 

bounded central difference scheme (BCDS) is based on the normalised variable diagram and blends 

from the CDS scheme to the first-order upwind scheme when the convection boundedness criterion [9] 

is violated. For time discretisation a second order backward Euler scheme was used.  

For convenience, in this paper short labels are used for turbulence models and discretisation 

schemes: SST for the Shear Stress Transport model, SAS for the SAS SST model, ZLES for the SAS 

SST with zonal LES in the draft tube, HRS for the High Resolution Scheme and BCDS for the 

bounded Central Differential Scheme.  

3.  Efficiency prediction for a low head bulb turbine 

Results of a detailed numerical analysis of flow in a low head bulb turbine, carried out with the 

commercial solver ANSYS CFX, Version 14.0, are presented. A model of the turbine was tested on a 

test rig at Turboinštitut, in accordance with international standard IEC 60193 [10]. Numerical 

simulations were at first performed at BEP, then a detailed research was done at even smaller head 

(see table 1), where accurate prediction of flow in the draft tube is even more important for accurate 

efficiency prediction.  

The turbine consists of an inlet part with a vertical pier, 16 guide vanes, 3-blade runner and a draft 

tube. Tip clearance was modelled while hub clearance was neglected. Based on a study [11] it can be 

assumed that the effect of hub clearance on the prediction of turbine efficiency is much smaller than 

the influence of the runner blade tip gap. 

 

Table 1: Local best efficiency operating 

points (LBEP) for two values of   
Operating point (deg.) BEP BEP 

OP1 12 0.73 0.97 

OP2 20 1.00 0.97 

OP3 28 1.30 0.97 

OP4 12 0.66 0.61 

OP5 20 0.96 0.61 

OP6 28 1.29 0.61 

    

 
Figure 1: Computational grid 

 

Grids in all parts were structured. Most of the simulations were done on a basic grid (BG) with 

about 9 million nodes. Some simulations were done on a fine grid (FG) with 35 million nodes, a 
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coarse grid (CG) with 5.3 million nodes and a very coarse grid (VCG) with 2.1 million nodes. The 

basic computational grid can be seen in figure 1, while numbers of nodes in all computational grids are 

presented in table 2. 

The numerical analysis was done in three stages. Firstly, a steady state analysis for three angles of 

runner blades and two values of energy coefficient  was performed. Secondly, a transient analysis 

was done with three turbulence models using two discretisation schemes (SST HRS, SAS HRS, SAS 

BCDS and ZLES BCDS) at only one operating point. At this stage the effect of grid density was 

tested. Finally, a transient analysis was performed at several operating points for three angles of runner 

blades and two values of energy coefficient, with the ZLES turbulence model and BCDS for advection 

term on the basic grid. 
 

Table 2: Number of nodes in all turbine parts for basic, very coarse, coarse and fine grids 
 Grid 

label 

Inlet part  Guide vane 

cascade 

Runner Draft tube Draft tube 

prolongation 

Total number 

of nodes 

Basic grid BG 1,394,720 2,059,568 2,076,603  1,936,188  11,573,336  9,040,415  

Very coarse grid VCG 223,375  1,032,976  531,603  211,428  170,332  2,169,714  

Coarse grid CG 223,375  1,032,976  531,603  1,936,188  1,573,336  5,297,478  

Fine grid  FG 1,394,720  2,059,568 2,076,603  16,324,636  13,176,576  35,032,103  

 

3.1 Steady state analysis  

True transient interaction between stator and rotor can be predicted only by transient rotor stator 

simulation. Unfortunately, such simulations are very time consuming and they require large computer 

resources. For steady state analysis, a frozen rotor or a stage condition is prescribed between stationary 

parts and runner. With frozen rotor model the two frames of reference (stationary and rotating) are 

connected in such a way that they each have a fixed relative position throughout the calculation. The 

frozen rotor model is most useful when the circumferential variation of the flow is large relative to the 

component pitch. The disadvantage of this model is that the transient effects at the frame change 

interface are not modelled. No mixing between stationary and rotating components is taken

into account. An alternative to the frozen rotor is a stage 

condition. The stage averaging at the frame change interface is 

equivalent to assuming that the physical mixing supplied by the 

relative motion between components is sufficiently large to cause 

any upstream velocity profile to mix out prior to entering the 

downstream machine component. Stage analysis is not 

appropriate when the circumferential variation of the flow is 

significant [6].  

In our case, the guide vane cascade was close to the runner and 

due to the wakes behind the vanes circumferential variation of 

flow was significant. Therefore the frozen rotor model was quite 

suitable at the frame change interface between the guide vanes 

and the runner. At the interface between the runner and the draft 

tube the mixing supplied by the runner motion was significant, 

but not sufficiently intensive to mix out the wakes behind the 

runner blades. In figure 2 it can be seen that both models, frozen 

rotor and stage, introduced errors at the inlet of the draft tube. By 

frozen rotor a bit stronger wakes than by transient rotor stator 

were obtained behind the runner blades. Besides, contrary to 

reality, the positions of the wakes remained fixed during the 

simulation. The circumferential averaging of the stage model 

looks even less realistic. Steady state simulations were performed 

with both, stage and frozen rotor conditions at the interface 

between the runner and the draft tube. 

 

  
 

Velocity 

contour 

 

Frozen rotor 

 

 

 

 

Stage  

 

 

Transient  

 

 

Figure 2: Velocity 

distribution at the draft tube 

inlet obtained by frozen 

rotor, stage and transient 

stator rotor at OP6  
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Steady state analysis was done with SST turbulence model on the basic grid. For discretisation of 

the advection term, the 'high resolution' scheme (HRS) implemented in ANSYS-CFX was used. The 

input data were geometry, head and rotational speed. Values of discharge, torque on the shaft, flow 

energy losses and efficiency were calculated from numerical results. Converged steady state solutions 

were not obtained, mostly due to unsteadiness in the draft tube. Flow energy losses in the draft tube 

and consequently also the values of discharge, torque and efficiency oscillated during the simulations. 

Therefore, instead of the values of the last iteration the averaged values of last 300 iterations were 

used as a result of steady state analysis. Steady state simulations were done for three angles of runner 

blades at two values of energy coefficient (/BEP = 0.97 and /BEP = 0.61). Results for the local best 

efficiency points are presented in table3. 

In figure 3 flow in the draft tube at OP4, OP5 and OP6 ( = 0.61BEP) is presented. It can be seen 

that due to the frozen rotor condition strong wakes behind the runner blades caused swirls in the draft 

tube. At the outlet part of the draft tube, where conical shape changed into a shape with rectangular 

cross-section, the swirls enlarged and at OP6 they even joined in to one huge swirl. Flow energy losses 

increased drastically and at OP6 they exceeded 13.4% of head. With the stage condition, losses in the 

draft tube are significantly smaller. Consequently, calculated discharge, torque on the shaft and 

efficiency values are larger than when the frozen rotor condition was used. Calculated values of torque 

on the shaft were smaller than the measured ones. In case of the stage condition the largest 

discrepancy in torque is about 5%, but in case of frozen rotor condition with increasing blade angles 

the discrepancy increased. At OP3 and OP6 it reached 10.3% and 14.5%, respectively. For both, stage 

and frozen rotor conditions, calculated efficiency values are smaller than the measured ones. In case of 

frozen rotor condition the discrepancy in efficiency at OP3 and OP6 exceeded 10% and 14%, 

respectively, while in case of stage condition it is less than 4.5%.  It can be concluded that numerical 

prediction of efficiency by steady state analysis with frozen rotor condition entirely failed due to 

underestimated torque on the shaft and overestimated losses in the draft tube. Results obtained with 

the stage condition are closer to the measured values but with more than 4% difference they are also 

not acceptable. At OP6 where the discrepancy was the largest, a steady state simulation with frozen 

rotor condition was repeated on the fine grid (FG), but no improvement of results was achieved.  
 

Table 3: Comparison of steady state numerical results at LBEP with measurements 

 frozen rotor condition stage condition 

 QCFDQExp CFDExp DT CFDExp QCFDQExp CFDExp DT CFDExp

OP1 1.026 0.993 3.67 0.972 1.027 1.001 1.95 0.984 

OP2 1.010 0.949 5.35 0.951 1.011 0.949 4.08 0.959 

OP3 0.999 0.897 11.33 0.900 1.016 0.972 4.30 0.959 

OP4 1.028 0.993 2.88 0.969 1.028 0.994 2.19 0.972 

OP5 0.973 0.880 7.71 0.915 1.006 0.964 3.27 0.962 

OP6 0.997 0.855 13.44 0.860 1.004 0.955 4.16 0.955 

 
           OP4   OP5   OP6 

    
Figure 3: Flow in the draft tube at local best efficiency points for blade angles 12, 20 and 28 deg., 

/BEP = 0.61, steady state results, frozen rotor condition, basic grid (BG) 
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3.2 Transient analysis at one operating point 

At OP6 (the LBEP for runner blade angle 28 deg., BEP = 0.61) the discrepancy between numerical 

and measured results was the largest. Therefore, this point was chosen for transient simulations 

performed with SST, SAS and the ZLES models on the basic grid (BG). In combination with the SST 

model HRS was used for the advection term, while in combination with the SAS and the ZLES models 

BCDS was used. In order to see the effect of the advection scheme the simulation with the SAS model 

on BG was repeated with HRS. To see whether the results can be additionally improved by grid 

refinement the simulations with the SAS and the ZLES were repeated on fine grid. The purpose of 

simulations on more coarse grids was to see whether it was possible to reduce the CPU time without 

too significant effect on accuracy of results. Values of y+ for different grids are presented in table 4. 

For simulations on BG and FG time step corresponded to 0.5 deg. of runner revolution while for 

CG and VCG it corresponded to 1 deg. of runner revolution. Maximal values of Courant number in the 

draft tube were less than 4.4 while averaged values were less than 0.1 for all cases. The simulations 

run on a supercomputer cluster with 512 Quad-Core Intel Xeon processors L5335. For all employed 

combinations of turbulence models, advection schemes and grid density, CPU is presented in table 5. 

 

Table 4: Averaged values of y+ for different 

grids, simulations at OP6 with SAS BCDS  
Model/Grid VCG CG BG FG 

Inlet part 55 55 5.7 5.7 

Guide vanes 7 7 3 3 

Runner 23 23 5 5 

Draft tube  148 16 14 9 

 

Table 5: CPU (in hours) for transient 

simulations on 64 cores, 1 runner revolution   
Model/Grid VCG CG BG FG 

SST HRS   20.33  

SAS HRS   22.66  

SAS BCDS 3.97 6.73 22.13 68 

ZLES BCDS 4.03  22.60 70 

 
Figure 4: Values of discharge, head, torque, losses in the draft tube and turbine efficiency during 

transient simulation with ZLES model on the basic grid at OP6 

 

Typical evolution of results obtained with ZLES or SAS is presented in figure 4. Transient 

simulations started from the results of the steady state simulation. During the first 14 runner 

revolutions flow energy losses in the draft tube were decreasing and consequently the values of 

discharge, torque and efficiency were increasing. A large swirl (see figure 3, OP6) at the right part of 

the draft tube (looking in the flow direction) obtained by the steady state analysis was moving towards 

the outlet and became smaller and smaller. The values of discharge, torque on the shaft and efficiency 

were increasing when flow energy losses in the draft tube were decreasing and vice versa. The head 

was input data and it was constant during the simulation. All observed quantities stabilized after 20 

runner revolutions. Only small oscillation due to unsteadiness of the flow remained. On the contrary, 

the results of transient simulation with the SST model on BG after 33 runner revolutions still did not 

stabilize. 
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In figure 5 flow in the draft tube visualized by streamlines and velocity distribution on inlet and 

outlet of the draft tube is presented for three turbulence models (SST, SAS, ZLES), two advection 

schemes (BCDS and HRS) and different grids (BG, FG, VCG). In case of the SST model a lot of 

swirls in the flow remained and velocity distribution at the draft tube outlet is not uniform. During 

simulations with the SAS and the ZLES models on BG most of the swirls in the flow vanished. 

Velocity distribution at the draft tube outlet is quite uniform. No effect of additional grid refinement 

(FG) on streamlines and velocity distribution at the draft tube outlet can be seen. A negative effect of 

grid coarsening was considerable, especially in case of SAS on VCG, where large swirls in the draft 

tube can be observed. Hardly any difference can be seen between flow obtained with SAS HRS and 

SAS BCDS.  

 
 SST, BG, HRS SAS, VCG, BCDS SAS, BG, BCDS SAS, FG, BCDS 

 

 

 

    
    

SAS, BG, HRS ZLES, VCG, BCDS ZLES,BG, BCDS ZLES, FG, BCDS 

    

Figure 5: Flow in the draft tube visualized by streamlines and velocity contours at the draft tube inlet 

and outlet at OP6, results of transient simulations after 31 runner revolutions 

 
 

 SST, BG, HRS SAS, VCG, BCDS SAS, BG, BCDS SAS, FG, BCDS 

 
Logaritmic 

scale 

 

    
    

SAS, BG, HRS ZLES, VCG, BCDS ZLES,BG, BCDS ZLES, FG, BCDS 

    

Figure 6: Vortical structures in the draft tube visualized by iso-surfaces of velocity invariant Q = 0 at 

OP6, results of transient simulations after 31 runner revolutions 
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Vortical structures in the flow are presented by iso-surfaces of second invariant of velocity gradient 

Q (Q = 0) coloured by viscosity ratio (Eddy Viscosity / Dynamic Viscosity) in figure 6. The 

differences due to a choice of turbulence model and grid density are significant. With the SST model 

only large vortical structures were obtained and a value of viscosity ratio was high. With the SAS 

model also smaller structures in the flow were obtained, the value of viscosity ratio was smaller. Very 

fine structures were well resolved with the ZLES model where the value of viscosity ratio was the 

smallest. In case of the SAS model by additional grid refinement (FG) no improvement was achieved, 

the differences in vortical structures and in values of viscosity ratio were negligible. On the contrary, 

the grid refinement did have a positive effect on results obtained with the ZLES model. Even finer 

structures in the flow were obtained and viscosity ratio was smaller. Contrary to expectations, a 

transient simulation with the ZLES model on VCG gave much better results than SAS on VCG and 

even than SAS on CG. In fact, the results obtained by ZLES on VCG looked more like the results of 

SAS on BG than like the results of SAS on VCG.  

In figure 7 all results of steady state and transient simulations at OP6 are compared to each other 

and to the measurements. The influence of grid density, turbulence model and advection scheme on 

predicted values of discharge, torque on the shaft, flow energy losses and efficiency can be seen. Flow 

energy losses were divided by head. Discharge, torque and efficiency values were divided by the 

measured values at the same operating point. For results of a steady state simulation with frozen rotor 

condition on both frame change interfaces, a label SFF is used. When at the interface between the 

runner and the draft tube the stage condition was prescribed, a label SFS is used. A label T referenced 

to transient results. Labels HRS and BCDS referenced to high resolution scheme and bounded central 

differential scheme for the advection term. So a label BG,SFF,SST,HRS means steady state results 

obtained with frozen rotor on BG with the SST model and HRS used for the advection term, while 

FG,T,ZLES,BCDS means transient results on fine grid with the ZLES model and BCDS.  

For transient analysis the values during the last 5 runner revolutions were averaged. The results of 

transient simulation with the SST model after 33 runner revolutions still did not stabilize, but it was 

clearly seen that flow energy losses in the draft tube were larger and efficiency was at least 2% lower 

than the values obtained with the SAS and the ZLES models. Although the results of SST were not 

stabilised, their averaged values are presented in diagrams in figure 7.    

For all simulations at OP6 the discrepancy between calculated and measured values of discharge 

was in the range of 1%. All simulations underestimated values of torque on the shaft. Drastic 

discrepancy of more than 14% in case of steady state results with frozen rotor condition reduced to the 

smallest discrepancy of 1.76% in case of transient simulation with ZLES BCDS on FG.  

Flow energy losses before the runner were between 2.69% and 3.05% of head. A difference 

between losses obtained with SAS HRS and SAS BCDS indicated the effect of advection scheme. 

When the same turbulence model and the same scheme (SAS BCDS) were used, larger losses were 

obtained on CG and VCG.  

Flow energy losses in the runner were between 6.4% and 8.38% of head. The highest value was 

obtained by steady state simulation with the stage condition. Losses in the runner decreased when 

BCDS was used instead of HRS. The smallest losses in the runner were obtained on CG and VCG 

because tip clearance was not modelled.  

Losses in the draft tube obtained by steady state simulations with the stage condition are 4.16% of 

head while in case of frozen rotor they exceeded 13.4% on BG and even increased to 14.7% on FG. 

With transient simulations losses in the draft tube decreased significantly, their values were on BG 

between 4.5% (SAS BCDS and ZLES BCDS) and 5.6% (SST HRS) of head. Additional grid 

refinement didn`t have any effect on losses in case of the SAS model, but with the ZLES model on FG 

the smallest losses, equal to 3.94% of head, were obtained. Comparing the losses obtained on BG with 

SAS HRS and SAS BCDS the latter were smaller for 1.1% of head. In spite of the same grid in the 

draft tube, calculated flow energy losses obtained on CG were much larger than those obtained on BG. 

Clearly too coarse grid in the runner without tip clearance affected the flow at the draft tube inlet and 

consequently in the whole draft tube. The results on VCG were even worse.  
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SAS BCDS and ZLES BCDS on BG predicted nearly the same value of efficiency, a difference to 

the measurement was 3%. In case of SST the discrepancy to the measured value was 5%. The 

efficiency value obtained by SAS on BG with BCDS was for 1.8% higher than the value obtained by 

the same turbulence model on the same grid, but with HRS. The higher efficiency value was obtained 

due to smaller flow energy losses in all turbine parts and higher torque on the shaft. In case of the SAS 

model by additional grid refinement (FG) the calculated value of efficiency was not improved. On the 

contrary, in case of the ZLES model grid refinement resulted in 0.44% higher value of efficiency. Due 

to significantly larger flow energy losses on CG and VCG the efficiency values were much smaller. A 

transient simulation with the ZLES model on VCG gave much better results than SAS on VCG and 

even than SAS on CG. Nevertheless, predicted value was still about 6% smaller than the measured one 

and 3% smaller than the value calculated on BG.   

  

  

  
Figure 7: Comparison of numerical results at OP6 obtained by SST, SAS and ZLES on different grids 

to the measurements 
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3.3 Transient simulations for different operating regimes 

Transient simulations with ZLES BCDS were performed on the basic grid for both values of energy 

coefficient (BEP = 0.97 and BEP = 0.61). Such simulations are very time consuming therefore 

complete efficiency curves were not obtained. In figure 8 the efficiency values were divided by 

measured efficiency value at the best efficiency point. For all operating points the accuracy of 

efficiency prediction was improved in comparison to the steady-state results. An improvement for 

blade angle 12 deg. was small, but for angles 20 and 28 deg. it was considerable. The discrepancy 

between measured and numerical results for BEP = 0.97 at LBEP for blade angles 12, 20 and 28 

deg. were 0.2%, 0.56% and 1.5% respectively. For smaller head (BEP = 0.61) the discrepancy at 

LBEP for blade angles 12 deg., 20 deg. and 28 deg. were 2.5%, 1.9% and 2.7%, respectively. 

 

                      

 
Figure 8: Comparison of predicted efficiency to the experimental values 

 

4. Conclusions 

On the basis of a detailed analysis of flow in a bulb turbine with different turbulence models and at 

different operating regimes it can be concluded: 

 Steady state analysis with the frozen rotor condition between the runner and the draft tube 

entirely failed to predict turbine efficiency due to underestimated torque on the shaft and 

especially overestimated flow energy losses in the draft tube. With the stage condition the 

results were closer to the measured values but still not satisfactory.  

 Transient simulations with the SST, the SAS and the ZLES models were performed at one 

operating point for maximal runner blade angle at the smaller value of head. Results of 

transient simulation with the SST model were still not reliable but with the SAS and especially 

with the ZLES models large improvement was achieved. On the basic grid the results of SAS 

and ZLES were equally accurate, but on very coarse and fine grids the results of the ZLES 

model were significantly better. Comparing the results of SAS HRS and SAS BCDS it can be 

seen that agreement with measurements is better when BCDS was used due to smaller losses 

and better prediction of torque on the shaft.  

 Comparing the results of the steady state analysis and the results of the ZLES model to the 

measurements, the agreement of the latter one was better at all operating regimes. At BEP the 

discrepancy between results of the ZLES model and measured values was 0.56%, but for the 

smaller head (BEP = 0.61) in spite of large improvement the discrepancy was even on the 

fine grid still about 2.5%.  

 Too long CPU time is main disadvantage of transient simulations and the reason for their 

limited use in design process. It can be expected that with future development of hardware and 

software the problem will be overcome. 
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Nomenclature 
Variables and quantities:  Indekses:  

g  Gravity  CFD CFD value 

  Head  Exp Experimental value 

DT HDT = Ptot/(g)  Losses in the draft tube    

M  Torque on the shaft  Abbreviations:  

Ptot  Total pressure  BCDS Bounded Central 

Q  Discharge   Differential Scheme 

r  Runner radius  BEP Best Efficiency Point 

  Runner blade angle  BG Basic Grid 

  Density  CG Coarse Grid 

  Efficiency  FG Fine Grid 

 Qr3) Discharge coefficient  HRS High Resolution Scheme 

 2gH/(r)2 Energy coefficient  LBEP Local Best Eff. Point 

  Runner speed  VCG Very Coarse Grid 
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