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Abstract.  In this paper, a hyperspectral-based system was 
introduced to detect the ripeness of oil palm fresh fruit bunches 
(FFB). The FFBs were scanned using a hyperspectral device, and 
reflectance was recorded at different wavelengths. A total of 469 fruits 
from oil palm FFBs (nigrescens, virescens, oleifera) were categorized 
as overripe, ripe, and underripe. Fruit attributes in the visible and near-
infrared (400 nm to1000 nm) wavelength range regions were 
measured. Artificial neural network (ANN), classified the 
different wavelength regions on oil palm fruit through pixel-wise 
processing. The developed ANN model successfully classified 
oil palm fruits into the three ripeness categories (ripe, underripe, 
and overripe). The accuracy achieved by our approach was compared 
against that of the conventional system employing manual 
classification based on the observations of a human grader. Our 
classification approach had an accuracy of more than 95% for all three 
types of oil palm fruits. The research findings will help increase the 
quality harvesting and grading efficiency of FFBs. 

1. Introduction
Oil palm fruit is typically grown in the tropical areas in South East Asia, South 
Africa and South America [1]. Palm oil provides vital food for millions of people 
and has been found to be very healthy for the human diet. Palm oil has good 
resistance to oxidation and prolonged exposure to high temperatures, thus making 
it ideal for frying. A high percentage of palm oil is usually added to frying oils 
because of its structure and other economic advantages.  
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The Malaysian palm oil industry is considered to be highly regulated. A major 
problem faced by oil palm exporters and producers is the accurate grading of fresh 
oil palm fruits according to their ripeness levels before processing. The maturity or 
ripeness of the oil palm fruits dictates the quality as well as overall marketability of 
the palm oil produced [2].Oil palm fruits can generally be categorized into four 
ripeness grades: ripe, underripe, unripe, and overripe [3]. Bunches range in color 
from yellow, reddish orange, red, to black. A fruit before maturity is typically 
yellow at the base and dark purple to black at the apex. A young palm has 50 to 
100 red-violet ripe fruits per bunch. The ratio of oil palm fruit pigments, such as 
carotenoids and chlorophylls, affects the color of the oil palm fruit. For example, 
unripe fruits have a higher proportion of chlorophyll that gradually decreases upon 
maturity [4]. Similarly, carotenoids increase as oil palm fruits mature [2]. Color 
changes resulting from biochemical reactions can likewise be related to fruit 
maturity [5]. 

Among the challenges during oil production is the grading of oil palm fresh fruit 
bunches (FFBs) in terms of maturity. Workers still employ the conventional 
method that requires the use of their experience to assess oil palm fruit bunch 
condition visually by making a small cut in the fruits to see the mesocarp color and 
counting the number of loosened fruits per bunch [6, 7].The manual grading of oil 
palm FFBs is a time-consuming and labor-intensive process that is prone to biased 
appraisal and human error, drastically affecting the growers’ profitability [4]. 
Therefore, a rapid, reliable, and accurate grading technique for the detection of oil 
palm FFB ripeness is necessary. 

Successful automation of this process requires a system that can yield results that 
are comparable with human grading. The application of a color vision camera 
system to differentiate the classes of palm oil has recently been studied [8]. 
Researchers have developed a maturity color index based on different color 
intensities. Moisture measurements are efficient indicators of the internal features 
and characteristics of fruit and can thus be used in different applications to obtain 
valuable information on fruit [9]. 

A method used to design a non-destructive machine for fruit inspection is the 
optical imaging technique. Fruits and vegetables have previously been categorized 
based on physical characteristics [10, 11]. Optical sensors have more recently been 
used for fruit quality detection in various horticultural crops [12-15]. Cameras used 
for detecting the maturity of the fruit have optical sensors for multi-spectrum 
imaging. A number of the techniques used include near-infrared (NIR) reflectance 
spectroscopy, laser photon counting spectroscopy, and image analysis. García-
Ramos et al. [14] reviewed several non-destructive techniques used for determining 
post-harvest fruit firmness. Multispectral imaging techniques collect spectral 
information in two or three selected spectral bands. Different features of the target 
are determined based on the band inspected. The success of a multispectral 
machine vision system depends on the accuracy of spectral band selection from a 
range of probable inspection spectra. In infrared color composites, the colors 
associated with those bands in the 0.7 - 1.1 μm interval are normally richer in hue 
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and bright from tree leaves. The representative original spectra bands of leaves in 
the high-, middle-degree water stress and no water stress, respectively is shown in 
figure 1.  

Figure 1. Original spectra of leaves with different relative water 
content (RWC). 

A visual system is designed to produce high-resolution spectral bands called 
imaging systems or hyperspectral sensing. Sensor systems that have been 
investigated for vision-based fruit bunch grading include optical RGB cameras and 
hyperspectral imaging cameras [2, 5, 8, 16-19].  

Hyperspectral imaging has also been widely used (mostly on apples) to measure 
the internal quality attributes of fruits, such as sugar or SSC, flesh and skin color, 
firmness, acidity, and starch index [20]. These techniques provide evidence of the 
potential of using optical sensors for FFB maturity determination. This approach 
provides more useful details for determining the most important spectral bands that 
can be used to differentiate normal and abnormal apples [21]. 

Non-parametric machine-classification algorithms are among the simplest and 
oldest methods of pattern recognition and are suitable for determining the ripeness 
of fruits [22].However; most previous studies were conducted under laboratory 
conditions. In this study, selective visible NIR bands in a portable optical sensor 
system were used for the determination of oil palm FFB maturity. More 
information on the quality of agriculture can be provided by the more detailed 
reflectance data of hyperspectral images compared with RGB [23].To evaluate the 
internal qualities of oil palm fruit in a laboratory,  the use of a non-destructive 
technique such as hyperspectral imaging enables the testing of a larger number of 
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oil palm bunches. [2] used hyperspectral imaging for FFB maturity/ripeness 
estimation and achieved a classification accuracy of up to 100%. 

In such a system, a hyperspectral sensor is used to acquire reflectance data, and 
artificial neural network (ANN) algorithms are employed to classify three classes 
of oil palm FFBs (underripe, ripe, and overripe FFBs). ANN is application is 
ranging from data classification to data prediction and data visualization [24-26]. 
The ANN model used in this work was the multilayer feed forward network with 
three layers (30 input layers, 15 hidden layers, and one output), as shown in figure 
2.  

Figure 2. Simple feed-forward network. 

A training dataset was used to train the algorithm, whereas testing datasets were 
used to test the developed (trained) algorithm in terms of predicting the class of the 
test dataset samples. The classification accuracies were determined by the 
reflectance data, which were directly used as input to the classification algorithm. 

The statistical analysis method is important for determining the difference between 
the categories in this study, such as the receiver operating characteristic (ROC). 
ROC analysis offers a more robust evaluation of the relative prediction 
performance of alternative models compared with traditional comparisons of 
relative error [27, 28]. ROC is considered a statistical measure for studying the 
performance of an imaging or diagnostic system with respect to its capability to 
detect abnormality accurately and reliably [true positive (TP) without providing 
false detection [29]. In other words, ROC analysis provides a systematic analysis of 
the sensitivity and specificity of a diagnosis [30-32]. The true negative (TN) and 
TP indexes represent agreement with the classification of a human expert classifier. 
The false negative (FN) and false positive (FP) indexes represent disagreement in 
classification. At the end of each epoch (e), when all validation patterns are 
presented to the ANN classifier, the statistical indexes of such epoch are calculated 
for each threshold (t), including sensibility and specificity [29]. Sensitivity refers to 
the capacity of the classifier to identify a positive pattern among truly positive 
patterns, as shown in figure 3. 
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Figure 3. Sensibility versus threshold and specificity versus threshold (a) and the 
ROC curve with a hypothetical example (b). 

The value of the sensitivity varies between 0 (when FN ≠ 0 and TP = 0) and 1 
(when TP ≠ 0 and FN = 0).A smaller number of FNs denotes a higher sensitivity of 
the test. The sensitivity values are given along the abscissa axis and are given by:  

(1) 

Specificity denotes the capability of the classifier to identify negative patterns 
among the truly negative patterns. The specificity varies between 0 and 1. The (1- 
specificity) values are arranged along the axis and are given by: 

(2)

The ROC curve is a Cartesian graph that represents the dependency of the 
sensitivity and specificity of a classification system. An ideal classifier has a 
process sensitivity = 1 (TP = 1) and specificity = 1 (FP = 0) [30]. The ROC curve is 
an alternative approach to achieve accuracy in the evaluation of learning 
algorithms on natural datasets. The key assumption of ROC analysis is that TP and 
FP rates describe the performance of the model independent of class distribution. 
This analysis is conducted to provide a more robust comparative evaluation of the 
expected performance based on target data compared with a simple comparison of 
error, which assumes that the observed class distribution does not reflect any 
differences in the cost of different types of error. ROC analysis is of value in the 
evaluation of expected classifier performance under varying class distributions. 

ROC curves describe the predictive behavior of a classifier independent of class 
distributions or error costs, thus enabling the decoupling of classification 
performance from these factors. ROC analysis is often called the ROC accuracy 
ratio, a common technique used to determine the accuracy of default probability 
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models. A classifier has a higher probability of ranking a randomly chosen positive 
instance than a randomly chosen negative instance based on the area under ROC 
curve (AUC) [33]. 

AUC is a significant measure of the accuracy of ripeness determination. If AUC is 
equal to 1, then the ROC curve comprises two straight lines: one line vertical from 
(0, 0) to (0, 1) and the other line horizontal from (0, 1) to (1, 1). This test is 100% 
accurate because both sensitivity and specificity are 1.0, thus yielding no FPs and 
FNs. In other words, a test that cannot distinguish between what is normal and 
abnormal corresponds to an ROC curve that has a diagonal line from (0, 0) to (1, 
1). The ROC area for this line is 0.6. ROC curve areas are typically between 0.6 
and 1.0. Consequently, the value of AUC will always satisfy the following 
inequalities: 0 ≤ AUC ≤ 1 [42]. An AUC of close to 1 (area of unit square) 
indicates very reliable diagnostic test. 

Based the literature review there are still limitation on use indoor hyperspectral 
scanner device for oil palm ripeness different. This study was carrying out to 
develop an automated system for oil palm fruits bunch grading by using 
hyperspectral scanner technique. In addition, several wavelengths are investigated 
to distinguish between the three categories of oil palm fruit ripeness. The detailed 
objectives of this research are as follows: 

i.  To identify the relevant technologies to ensure the only ripe palm oil
bunches can be     collected. 
ii. To design and build an intelligent prototype for a real time grading system using
hyperspectral scanner. 
iii. To test and validate the developed system through actual palm oil bunch
collection.  From the statistical pattern recognition of view, three band selection 
methods will apply.  

From the statistical pattern recognition of view, three band selection methods will 
apply. The main aim of the study described in this paper also was to develop a 
hyperspectral technique that can assist the quality evaluation and classification for 
oil palm fruit. 

2. Materials and methods
The flow chart of the method logy is given in figure 4. Details for each step are 
given in the following section. 
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Figure 4.  Flowchart of methodology. 
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2.1 Samples preparation 
Oil palm fruits can be classified into six categories: black, underripe, ripe, overripe, 
empty, and rotten. The standards were established by the Malaysian Palm Oil 
Board (MPOB), as shown in Table 1.  

Table 1. Categorization of oil palm bunches. 

Category Description 

Black (Unripe) Bunch with complete fruits 

Hard (Underripe) Bunch with 1 to 9 fruits detached 

Ripe Bunch with 10 %to 50 % fruits detached 

Over ripe Bunch with 50% to 90% fruits detached 

Empty bunch Bunch with more than 90% fruits detached 

Rotten Bunch with all or part having turned black 

In this paper, total of 469 bunches evaluated by inspectors were allocated, tested, 
and divided into three types (nigrescens, virescens, oleifera). Each type of oil palm 
fruit bunches has three categories of ripeness (underripe, overripe, and ripe) were 
qualitatively determined by a human expert as shown in figure 5. 

Figure 5. Typical image of oil palm fruits. 

  Virescens:       (a) Underrip      (b) ripe      (c) overripe 

Nigrescens:         (a) Underrip      (b) ripe       (c) overripe 

  Oleifera:           (a) Underrip     (b) ripe      (c) overripe 
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All samples were freshly taken from the MPOB farm area at Kluang, Johor, 
Malaysia. All fruits from the same bunch were in a similar status of ripeness 
despite the fact that their colors and size may vary with location in the bunch. 

2.2 Hyperspectral device preparation 
The hyperspectral active sensor system used for data collection is shown in 
figure  6. The image acquisition device utilized for this study has a high resolution 
of 1600 × 1200 pixels and pixel depth of 12 bits/pixel with 824 spectral bands from 
400 nm to 1000nm.  

Figure 6. Schematic view of the hyperspectral imaging system 
showing a bunch on the conveyor. 

In this study, only reflectance measurements were analyzed. The hyperspectral 
imaging system employed in this research enabled different configurations for 
imaging in the visible NIR range setting. The hyperspectral system is very 
important to achieve good accuracy. The system set up of the spectral camera 
(Imperx IPX-2 M 30) was performed by connecting the x-stage USB connector and 
PCMCIA card to the assigned laptop and X-stage scanner. The camera was 
controlled by the software (Remote Sensing Cube, Specim Ltd. and Auto Vision 
Inc. Finland). 
A white reference tile and calibration sheet was installed on the x-stage scanning 
platform. Illumination lights (type 4 Lamp/A 128932 and 4 ASD Pro Lamp, 14.5 V 
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and 50 W) that were tripod mountable are especially designed for indoor laboratory 
diffuse reflectance measurements over a 400 nm to 2500 nm region were switched 
on to ensure even light distribution. SpectralDAQ was launched from the laptop. 
Spectral imaging properties were launched automatically upon selection of desired 
band. Using the camera controls, the frame and exposure time was adjusted to 15 
ms. through monitoring, we ensured that the profile plot peak did saturate nor 
exceed 4096.The camera height was accordingly adjusted to 1.1m from object 
height. For the OLE23 objective lens, focus was adjusted using the calibration 
sheet, such that the image was sharp and not blurred. The x-stage scanner of 
spectralDAQwas used to control the scan mirror control for the determination of 
the start and end points along the sample area. Scan rate was adjusted by visually 
comparing the ratio of actual length to width based on the viewed image. These 
steps ensured that the spectral camera was ready for the assessment of the oil palm 
fruit bunch. The oil palm fruit and the white reference were placed on the x-stage 
platform, and the start and end positions were defined. 

The hyperspectral imaging system was calibrated both spectrally and spatially by 
using the following procedures: Spectral calibrations employed eight lamps. For 
the spatial calibration, a white paper printed with thin parallel lines that were 2 mm 
apart was placed at the sample holder. The calibration results showed that the 
system was highly linear and that the distortion of spectral and spatial information 
was within one pixel on the charge-coupled device detector. Thus, no spectral and 
spatial corrections were needed for the system. The camera and spectrograph were 
used to scan the oil palm fruit line by line as the conveyer moved the oil palm fruit 
through the field of view of the optical system. The oil palm fruits were manually 
placed on the translational plate, which was covered by rubber mat to prevent the 
reflection of light, with region of interest facing the camera. After finishing the 
scans on one entire fruit bunch, the spatial-by-spectral matrices were combined to 
construct a three dimensional (3D) spatial and spectral data space. The scanning 
time for one oil palm was dependent on the integration time used for the camera, 
which was fixed to 200 ms and 5 s, and on the size of the oil palm. 
The hyperspectral data must be normalized with a standard reference under the 
same illumination system setup to establish a reflectance coefficient at each pixel 
location. The normalization process can be expressed as: 

× 1000        (3) 

where I(x,y,z) is the reflectance radiation intensity of spectral band z at pixel 
location (x,y), Iref (x,y,z) is the radiation intensity of a white reference tile with a 
known reflectance coefficient at band z and pixel location (x,y) under the same 
illumination light state, Idark (x,y,z) is the noise of the sensor at band z and pixel 
location (x,y) under no light reflectance, andRfactor (x,y,z) is the normalized 
reflectance factor used for every pixel (x,y) at band z. A scaling factor of 10000 

z)y,(x,I
z) y, (x,_I z)y,I(x,z)y,(x,R

ref

dark
factor
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was used to increase the dynamic range of the reflectance, as shown in above 
equation. 
The normalization and rearrangement processes comprised the calibration process 
of real hyperspectral data. After the calibration process, the 3D data cube is 
considered a 3D image cube. 
The acquired hyperspectral images were processed using Environment for 
visualizing Images (ENVI 4.7) to do classification such as subseting image, image 
resizing, filtering the image to remove the noise from the image, region of interest 
ROI. About 35000 pixels were manually selected from every corrected image as a 
region of interest (ROI). The average spectrum from ROI of normal surface of each 
fruit was calculated by averaging the reflectance spectral value of all pixels in the 
ROI. The denoised image is used with data processing software such as Matlab® to 
do the analysis of the FFB classification.  
11×11 low pass filter to remove the image noise. Low pass filter maintains the low-
frequency components of the image, which smooth it. Low pass filter have the 
same weights in every kernel element, also changing the center pixel value with an 
average of the neighboring values. The practical kernel size is 11×11. 

3. Data analysis
A total of 469 fruits were inspected and distributed into three types of oil palm fruit 
which have three classes (underripe, ripe, and overripe). These samples were 
analyzed on two stages, one stage is every type of oil palm fruits individually 
analyzing to get the reflectance for each class of fruit and which wavelength can 
distinguish between the three categories, and second stage all the types of oil palm 
fruit is together at specific wavelength which can selected by the percentage of 
high reflectance for each type of oil palm fruit. These samples were randomized 
and separated into independent training and testing datasets (75:25) to evaluate 
different classification algorithms. The replicates for each sample were averaged 
prior to further analysis. Matlab® was used for the analysis of the spectral data. 
This section analysis the most generally used statistical method found in the 
scientific literature for this purpose: Artificial neural network (ANN). 

4. Results and discussion

4.1 Spectral reflectance of the Nigrescens fruit 

Figure 7 presents the typical shapes of ripe, under ripe and overripe oil palm fruit 
reflectance spectra. The most important difference is the chlorophyll absorption 
hole (around 675 nm), which disappears as the fruit ripens. Nigrescens oil palm 
fruits had three broad band absorptions in the ripeness around 460, 675, and 970 
nm regions. The relative reflectance increases steadily over the wavelengths 680-
900 nm. The spectral bands from 750–910 nm differentiate between the three 
different categories of the fruit, which clearly demarcates the ripeness between 
three categories of oil palm fruit based on the wavelength.  
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Figure 7. Spectral profile at different ripeness 
stages of nigrescens oil palm fruits. 

4.2 Spectral reflectance of the Virescens fruit 

The typical shapes of ripe, under ripe and overripe oil palm fruit reflectance spectra 
was present in figure 8. The most important difference is the chlorophyll 
absorption hole (around 675 nm), which disappears as the fruit ripens. Virescens 
oil palm fruits had three broad band absorptions in the ripeness around 520, 670, 
and 970 nm regions. The relative reflectance increases steadily over the 
wavelengths 700-880 nm. The spectral bands from 750–910 nm differentiate 
between the three different categories of the fruit, which clearly demarcates the 
ripeness between three categories of oil palm fruit based on the wavelength.  

Figure 8. Spectral profile at different ripeness 
stages of virescens oil palm fruits. 
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4.3 Spectral reflectance of the Oleifera fruit 
The typical shapes of ripe, under ripe and overripe oil palm fruit reflectance spectra 
was present in figure 9. The most important difference is the chlorophyll 
absorption hole (around 675 nm), which disappears as the fruit ripens. Oleifera oil 
palm fruits had three broad band absorptions in the ripeness around 520, 670, and 
970 nm regions. The relative reflectance increases steadily over the wavelengths 
680-900 nm.  The spectral bands from 750–910 nm differentiate between the three 
different categories of the fruit, which clearly demarcates the ripeness between 
three categories of oil palm fruit based on the wavelength.  

Figure 9. Spectral profile at different ripeness 
stages of oleifera oil palm fruits. 

4.4 CHAID growing method results 
151 samples for virescens (36 under-ripe, 41 ripe and 74 over ripe oil palm 
images), 159 samples for nigrescens (46 under-ripe, 47 ripe and 66 over ripe oil 
palm images) and 159 samples for oleifera (52 under-ripe, 44 ripe and 63 over ripe 
oil palm images) 30 samples were used as test set (10 samples per categories) and 
others used for training set. The wavelength used was interval of 10. The results 
show the overall classification accuracy using classification tree (CHAID growing 
method) as shown in figure 10. 
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Figure 10. Overall classification accuracy using classification 
tree (CHAID growing method) for three types of oil palm 

fruits. 

The spectral bands from 710–940 nm showed the best test accuracy between the 
three different types of the oil palm fruit as shown in Table  2. Virescens type has 
stable range from 770 nm to 870 nm 83.3 %, also nigrescens type has same 
accuracy 83.3 % in the range 830 nm to 890 nm, and there is overlap between from 
830 nm to 870 nm, 830 nm it consider the best wavelengths to differentiate 
between three categories of oil palm fruits. Compared with oleifera type, it has 
accuracy medium at special region and the accuracy is limited, so there is no 
overlap between oleifera and another two types of oil palm fruit, 880 nm is 
consider the best wavelength for oleifera type. 
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Table 2. Overall classification accuracy for three types of oil palm fruits by using 
(CHAID growing method). 

Wavelength 

(nm) 

Test set for 

Virescens 

Test set for 

Nigrescens 

Test set for 

Oleifera 
710 70 66.7 76.7 
720 73.3 70 63.3 
730 73.3 73.3 66.7 
740 90 76.7 66.7 
750 86.7 73.3 66.7 
760 86.7 80 66.7 
770 83.3 80 66.7 
780 83.3 76.7 63.3 
790 83.3 86.7 63.3 
800 83.3 90 63.3 
810 83.3 90 66.7 
820 83.3 86.7 73.3 
830 83.3 83.3 76.7 
840 83.3 83.3 76.7 
850 83.3 83.3 50 
860 83.3 83.3 50 
870 83.3 83.3 50 
880 76.7 83.3 76.7 
890 73.3 83.3 80 
900 73.3 80 80 
910 70 80 80 
920 66.7 76.7 76.7 
930 70 90 76.7 
940 66.7 76.7 76.7 

4.5 Spectral reflectance of the all data (Nigrescens. Virescens, and Oleifera) Fruits 
The typical shapes of ripe, under ripe and overripe oil palm fruit reflectance was 
presented in figure 11. The first part of the graph (0 – 46 samples) present the 
nigrescens type which has three categories (underripe, ripe, and overripe), second 
part of the graph is virescens type between (46-93 samples); the last part of the 
graph is oleifera between (94 -140 samples). During three parts of the graph, the 
differentiation between three categories is clearly in nigrescens and virescens but 
difficult in oleifera type especially underripe and ripe samples. 
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Figure 11. Reflectance values for all data samples 
(nigrescens, virescens, and oleifera) at best wavelength 

830 nm. 

4.6 ANN-MLP evaluation using receiver operating characteristic  
The real performances of the ANN—MLP network is evaluated by the receiver 
operating characteristic (ROC) analysis and area under curve (AUC). The ROC 
analysis is related in a direct and natural way to the cost/benefit analysis of 
decision making. 

 4.6.1 Optimal neural network classifier nesults. During the training stage, a total 
of 469 samples of each dataset (nigrescens, virescens, oleifera), the dataset were 
presented as the full set of input samples to the ANN-MLP. Each dataset is graded 
as under-ripe (-1), ripe (0) and over-ripe (1), the maximum sum squared error 
(SSE) was empirically set at 10e-4, and the process was carried out at 10e6 epochs. 
After examining the efficiency and mean square error (MSE), the architectures of 
three layers comprising [50 30 1] [60 20 1] and [35 15 1] for nigrescens, virescens, 
oleifera, respectively. Those structures for each dataset were found to provide 
suitable performance result for each the dataset model. The “logsig” logarithmic 
sigmoid transfer function was used. 

After several trainings, the ANN-MLP model for ripeness classification succeeded 
in learning and matching the target appropriately with MSE equal to 9.7276e-004, 
1.09x10e-6, and 9.7476e-005 with model efficiency of 0.9999 in full training 
datasets. Based on the learning of the ANN-MLP, the full testing dataset (30% for 
each type type) was presented as input samples through the model. In the testing 
stage, viable performance results were obtained with MSEs of 0.00184, 0.00156 
and 0.00173 and efficiency rates of 0.8574, 0.7812 and 0.8245 in each full testing 
datasets (nigescens, virescens, oleifera), respectively. This result indicated the 
excellent performance of the method, as well as the capability of the ANN-MLP to 
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classify the ripeness of the three types of oil palm three individually as shown in 
figure 12. As well as is the case all data together. 

Figure 12. ANN-MLP model for ripeness classification for (a) Nigresence (b) 
Virecsens (c) Oleifera 

To evaluate the ANN model for ripeness classification that distinguishes between 
the under-ripe, ripe and over-ripe grades for three types of oil palm fruits, the same 
sets are examined. The ripeness classification and evaluation performed by the 
score of the AUC is measured from the ROC curve as shown in figure 13. 

Figure 13. AUC measured from the ROC curve for (a) Nigresence (b) Virecsens 
(c) Oleifera. 

 (b)  (a)  (c) 

 (b)  (c)  (a) 
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Figure 13 (a, b, c) depict the ROC graphs of c for  nigrescens, virescens andoleifera 
performed by the ANN-MLP with the higher AUC score obtained to recognize 
grade in the three datasets. The obtained results in figure 13 (a) indicate that the 
selected band features with ANN-MLP classifier performs perfect classification 
with AUC test accuracy of nigrescens ripeness (94.54).  In addition, the ANN-MLP 
classifier could perform at a higher rate with AUC test accuracy of virescens 
ripeness (98.67) as shown in figure 13 (b). Meanwhile, figure 12 (c) shows the 
ROC graphs of oleifera ripeness classification performed by the ANN-MLP to 
recognize selected band features with AUC score (97.89).  

Figure 14 shows the ROC graphs all data ripeness classification performed by the 
ANN-MLP to recognize selected band features with AUC score (95.73). 

Figure 14. AUC measured from the ROC curve for 
all data. 

Overall, the AUC score is an indicator of classification rate performance, which is 
high when the AUC test accuracy is higher than 94 in all cases. 

The ripeness classification performed by the ANN-MLP decision system to 
recognize the selected bands features using all datasets showed great performance 
results. 

5. Conclusions
This paper proposed a framework for (oil palm fruits bunch grading by using 
hyperspectral scanner technique). The ripeness detection of oil palm fruit bunch 
suffers from the lack of productivity, efficiency problems, and still graded by 
human visualization.  Research studies have shown that the major cause of 
problems can be traced back to the lack of automating inspection system. One 
commonly cited means to overcome this problem is through advanced 
technologies. However, the challenge arises when a decision has to be made to 
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choose the best technology to fulfill the present needs, since each system has its 
own technical, economic, and risk considerations. The goal of this paper was to 
develop a prototype that can help palm oil companies to choose the best 
investigation system that fits their needs.  

After enhancing the images, the resulted wavelength and reflectance was taken to 
be processed for classification. After analyzing the region of spectral bands 
between 750 to 900 nm, the best wavelength to distinguish all data of oil palm fruit 
(nigrescens, virescens) was 830 nm as show in figure (10), also has same 
reflectance values in three categories of nigrescens and virescens but oleifera type 
difficult to differentiate between two categories (underripe and ripe), that is 
meaning that nigrescens and virescens has almost same characteristic and the 
properties but oleifera does not has same characteristic with nigrescens and 
virescens. The classification was performed by ANN. The developed system shows 
high classification results on accuracy of the ripeness detection for the three types 
of oil palm fruits separately (nigrescens, virescens and oleifera ) with rates of 94.54 
%, 98.67 % and 97.89 % respectively  using the ANN-MLP classifier, A high 
classification results on accuracy of the ripeness detection for all data (nigrescens, 
virescens and oleifera) was 98.67 %.  

The solutions discussed here are oil palm detection system. By using a set of 
carefully selected hardware that used in indoor, the degree of ripeness can be 
detected in both with high accuracy. This developed system can be used to enhance 
and optimize the entire grading process. The proposed prototype is not only 
practical for detecting the ripeness of the bunches in terms of design and 
development, but also very affordable since the components of the proposed 
system are not very expensive. Therefore, further research in the area of 
hyperspectral has a great potential and can provide technological advancement for 
ripeness of oil palm fruits. 

In summary, the application framework improves the harvesting operation and 
presents the potential for improved workflow reliability and grading performance 
and for effortless derivation of performance indicators in project management. This 
study will be useful to the oil palm industry, oil palm engineers, oil palm 
harvesters, graders, mill operators, plantation managers, small holders and to the 
research community. 
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