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Abstract. In this paper, Laplace-Beltrami equations are used to generate orthogonal 
curvilinear grids on the sphere for ocean models. In addition to overcoming the 
pole-problem, the grid configuration has quasi-uniform cell-size on the whole sphere. 
Some quantities such as the grid length along two directions, the angle deviation from 
orthogonality, the area of the cell to evaluate the quality of the grid, which 
demonstrate the grid produced is fit to be a model grid on which the finite difference 
method or finite volume method can be implemented for numerical simulating of 
global atmosphere and ocean dynamics on large scale. 

1. Introduction
The global climate is getting warmer, causing an increasing threat from extreme weather. It's 
necessary to forecast the severe change of global climate in order to make possible 
preparations to reduce the destruction. All this depends on the well development of the global 
climate model, in which the most important two components are the global atmosphere and 
ocean model. So far, the spherical grids used can be classified into two types[1]: one type is 
the structured grid, which is characterized by a regular layout, and the number of first-order 
neighbors of each element is constant, such as the latitude-longitude spherical grid, 
cubed-sphere grid, the Yin-Yang overset grid.  The other is unstructured grid, which is 
composed by triangles or irregular polygons, the neighbors of each element are not so clear, 
such as the sphere icosahedral grid or geodesic grid. 

The orthogonal curvilinear grid belongs to a structured grid, it has two major merits: at 
first, the code of mesh and neighbor-searching is obvious, and the dynamic model equations 
have less terms related to mesh metrics under the orthogonal curvilinear coordinate. Secondly, 
the finite difference method or the finite volume method can be implemented with much easy. 
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At present, many operational weather and climate models are based on a latitude-longitude 
spherical grid, however the convergence of the meridians leads to resolution clustering at the 
poles, which causes the well-known pole-problem[2]. Meanwhile, some methods such as zonal 
filtering or space-smoothing, semi-implicit or Semi-Lagrangian method have been developed 
to overcome this problem in the numerical simulation of global atmosphere dynamics, 
however it is difficult to use these methods in the ocean models[3], therefore it's necessary to 
consider a new kind of orthogonal curvilinear spherical grid, which is fit for numerical 
modelling of large-scale atmosphere and ocean dynamics and expression of geographical 
space information. 

2. Generation of quadrilateral grids on the sphere surface

2.1. Gnomonic projection 
Consider the cube with sides of length 2a  inscribed into a sphere of radius R such that the 

eight vertices of the cube exactly touch the sphere and 3R a= . The cube is oriented in 

such a way that the 3D absolute Cartesian coordinate axes ( , , )X Y Z are normal to the faces, 

and the centroid of the cube is at the origin, as it can be seen in Figure 2.1, the left sub-figure 
gives the layout of each face of an open cube, the right one shows the cube and its 

circum-sphere under 3D absolute Cartesian coordinates. Let ( , )x y  be the local Cartesian 

coordinates centered on the surface of the cube face such that ,a x y a− ≤ ≤  and ( , )λ ϕ  

denotes spherical longitude-latitude coordinates, it follows that: 


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Figure 2.1. The left sub-figure gives the layout of an open cube, the right one shows the 
position of the cube and its circum-sphere under 3D absolute Cartesian 
coordinates. 
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There are two kinds of methods to generate spherical quadrilateral grids[4] 
 Equidistant gnomonic mapping:
The relation between the 3D Cartesian coordinates on the sphere and the local 2D Cartesian 
coordinate on cube surface X a= , see figure 2.2, which shows the relation between a point 

( , )x y in local 2D Cartesian coordinates and a point ( , , )X Y Z on the sphere with radius R: 

( , , ) ( , , )RX Y Z a x y
r

=

where r is the Euclidean distance between ( , , )a x y  and the origin. 

2 2 2r a x y= + +

 Equiangular gnomonic mapping:

tan(u)
tan(v)

x a
y a
= ∗

 = ∗

it is obvious that , [ , ]
4 4

u v π π
∈ − . 

Figure 2.2.  Gnomonic projection of the cube surface X a=  on the sphere 

Rancic′ et al[5] showed that the equiangular projection produces a more uniformly
spaced grid compared to the equidistant projection and is more suitable for finite difference 
method. D.Nair[4] indicated that on the sphere, with the same number of grid points, an 
equiangular projection is more accurate than an equidistant projection. But these two grids are 
not orthogonal and dynamic equations would become more complex under these 
non-orthogonal curvilinear coordinates. 

2.2. Elliptic grid generation on surface 
Elliptic grid generation is the iterative relaxation of a first-guess grid (via successive over 
relaxation) to satisfy a quasi-linear elliptic system of partial differential equations (PDEs) 
while imposing smoothness and orthogonality constraints[6]. In the case of the grid on sphere 
surface, each face of the physical grid in spherical coordinates is mapped to a 2-dimensional 
rectangular u-v parametric space. The elliptic systems are solved in parametric space while 
imposing the desired physical constraints; orthogonality and uniform grid spacing are the 
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most important constraints in most of practical application. There are two options for 
imposing orthogonality constraints: the Neumann constraint that allows the grid points to 
slide along the boundary of each face, and the Dirichlet constraint that holds the edge points 
fixed while adjusting the interior points and maintaining a quasi-uniform grid cell spacing. 
The Neumann approach computes a shift for each grid point along the boundary of the grid by 
forcing the dot product of the physical variables on two orthogonal coordinates (ξ, η) partial 
derivatives to be equal to zero; this approach will produce a convergence of grid cells near the 
corners. Orthogonality may also be imposed through the use of orthogonal control functions, 
i.e. the Dirichlet approach. These control functions are evaluated at the boundary to impose 
orthogonality, while maintaining the original grid spacing along the boundaries. The 
computation of two-order normal derivatives in control functions depends on a layer of ghost 
boundary points, getting the positions of these ghost points is the key. Then transfinite 
interpolation can be applied to interpolate the control functions from the boundary to the 
interior of the grid. In addition, a blending function can also be applied to force the interior 
points to remain close to the original grid spacing. 

In classical differential geometry, a surface S is viewed as a mapping from R2 to 
R3.Consequently, parametric surfaces or physical variables are defined in terms of parametric 
variables. In grid generation, parametric variables are defined in terms of computational 
variables, that is: 

     ( , , ) ( ( , ), ( , ), ( , ))X x y z x u v y u v z u v= =


    (1) 

( , ) ( ( , ), ( , ))u v u vξ η ξ η=  

In many cases, the conformal mapping can be used to generate the Body-Fitted mesh on a 
simple-connected domain under 2D cartesian coordinates. Similarly, a conforming mapping 
of a smooth bounded surface onto a rectangular region can be constructed by establishing a 
mapping from a square region of the computational plane into the surface which is orthogonal 
and has a constant aspect ratio[7,8]. The conditions can be expressed by the system of 
equations: 

. 0X X

M X X

ξ η

ξ η

=

=

 

  (2) 

where M is the grid aspect ratio. These two equations can be rewritten as: 

0X X Y Y Z Zξ η ξ η ξ η+ + = (3) 

( )2 2 2 2 2 2 2M X Y Z X Y Zξ ξ ξ η η η+ + = + +      (4) 

Using the chain rule for differentiation, the above equations can be expressed in the form: 

Mu av bu
Mv bv cu

ξ η η

ξ η η

= −

= −
(5) 
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Where 

22 12 11, ,g g ga b c
J J J

= = − =

( ) ( ) ( )2 2 2
11 u u ug x y z= + +      (6) 

( ) ( ) ( )
12

2 2 2
22

u v u v u v

v v v

g x x y y z z

g x y z

= + +

= + +

( )2

11 22 12J g g g= −

Assuming the relation between the computational variables ,ξ η and the parametric 

variables ,u v is: 

( )
( )

= u,v

= u,v

ξ ξ

η η





let ξ and η are twice continuously differentiable and the Jacobian of the inverse 

transformation J u v u vξ η η ξ= −  is non-vanishing in the region under consideration. Then the 

metrics , , ,u u v vξ η ξ η and , , ,u v u vξ ξ η η  are uniquely related by 

,

,

u v

u v

v u
J J

v u
J J

η η

ξ ξ

ξ ξ

η η

= = −

= − =
(7) 

Using these quantities in equation (5) so that the parametric variables become the independent 
variables, the system can be expressed in the form 

v u v

v u v

M a b
M b c
η ξ ξ
η ξ ξ
= +

− = +
   (8) 

solving the above systems for ,v uξ ξ  

( )
( )

v

u

v u

u u

M c b

M b a

ξ η η

ξ η η

= +

− = +
(9) 

note that 2 1b ac= − is used. This first-order system is analogous to Beltrami’s system of 
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equations for the quasi-conformal mapping on planar regions. It follows that the 
computational variables ξ and η are solutions of the following second-order linear elliptic 
system withΦ = Ψ = 0 

( ) ( )2 222 12 112uu uv vv u vg g g u v Jξ ξ ξ ξ ξ− + + ∆ + ∆ = Φ    (10) 

( ) ( )2 222 12 112uu uv vv u vg g g u v Jη η η η η− + + ∆ + ∆ = Ψ   (11) 

The Beltramians 2u∆ and 2v∆  are given by: 

( )

( )

22 12
2

11 12
2

u v

u v

g gu J a b J
u vJ J

g gv J b c J
v uJ J

    ∂ ∂
∆ = + = −    ∂ ∂     

    ∂ ∂
∆ = + = −    ∂ ∂     

  (12) 

The above system is the basis for elliptic methods generating surface grids. The source 
terms (or control functions) Φ and Ψ are added to allow control over the distribution of the 
grid points on the surface. Typically, the points in the computational space are given and the 
points in the parametric space must be computed. Therefore, it is convenient to interchange 
variables so that the computational variables ξ and η are the independent variables. The 
transformation given by equations (10) and (11) is reduced to the following system of 
equations for which the parametric variables u and v are the solutions of the following 
quasi-linear elliptic system[8,9]: 

( ) ( ) 2
22 12 11 22g u Pu g u g u Qu J uξξ ξ ξη ηη η+ − + + = ∆   (13) 

( ) ( ) 2
11 12 11 22g v Pv g v g v Qv J vξξ ξ ξη ηη η+ − + + = ∆    (14) 

the above system is the so-called Lapalce-Beltrami equations, where 

( ) ( )
( )

( ) ( )

2 2

11 11 12 22

12 11 12 22

2 2

22 11 12 22

2 2

22 11

2

2

,

g g u g u v g v

g g u u g u v u v g v v

g g u g u v g v

JJ JJP Q
g g

J u v u v

ξ ξ ξ ξ

ξ η ξ η η ξ ξ η

η η η η

ξ η η ξ

= + +

= + + +

= + +

= Φ = Ψ

= −

In addition, the following equations could be computed beforehand to get the Beltramians 

2u∆ and 2v∆  
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( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

( )
( )
( )
( )
( )
( )

11 22 22 11 12 12

11 22 22 11 12 12
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u vv v uv
v
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J

g X X

g X X

g X X

g X X

g X X X X

g X X X X

 = + − 

 = + − 

= ⋅

= ⋅

= ⋅

= ⋅

= ⋅ + ⋅

= ⋅ + ⋅

gg gg

gg gg

gg gg

gg gg

gg gg gg gg

gg gg gg gg

      (15) 

we take the finite difference method to solve the equations (13) and (14), and the terms 

11 12 22, ,g g g can be computed according to the expression of the parametric surface 

beforehand[10]. In terms of the grid points in the interior of the region, the central difference is 
used to approximate the first-order and second-order derivatives: 

( )

1 1,

1, , 1
2

, 1 1

, 1 , 1
2

1, 1 1 1 1, 1 1 1

,
2

2 ,
( )

,
2

2 ,
( )

, ,
4( )

i j i j

i j i j i j

i j i j

i j i j i j

i j i j i j i j

u u
u

u u u
u

u u
u

u u u
u

u u u u
u

ξ

ξξ

η

ηη

ξη

ξ

ξ

η

η

ξ η

+ −

+ −

− −

+ −

+ + + − − + − −

−
≈

− +
≈

−
≈

− +
≈
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≈









 

  (16) 

the partial derivatives of v can be approximated in the same way. Choose the discrete 
space-step ∆ξ = ∆η = 1, then 

( ), 22 1, 1, 1, 1,
22 11

1 { [2( ) ( )]
4i j i j i j i j i ju g u u P u u

g g − + + −= + + −
+

 

11 , 1 , 1 , 1 , 1

2
12 1, 1 1, 1 1, 1 1, 1 2

[2( ) ( )]

( ) 2 }
i j i j i j i j

i j i j i j i j

g u u Q u u

g u u u u J u
− + + −

− − − + + − + +

+ + + −

− − − + − ∆
(17) 
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( ), 22 1, 1, 1, 1,
22 11

1 { [2( ) ( )]
4i j i j i j i j i jv g v v P v v

g g − + + −= + + −
+

 

11 , 1 , 1 , 1 , 1

2
12 1, 1 1, 1 1, 1 1, 1 2

[2( ) ( )]

( ) 2 }
i j i j i j i j

i j i j i j i j

g v v Q v v

g v v v v J v
− + + −

− − − + + − + +

+ + + −

− − − + − ∆

the above systems can be solved by the iterative method known as successive 
over-relaxation(SOR). 

( )
( )

1 1
, , , , ,

1 1
, , , , ,

1

1

n n n
i j i j i j i j i j

n n n
i j i j i j i j i j

u w u w u

v w v w v

+ +

+ +

= + −

= + −

where the acceleration parameter ,i jw  should satisfy: 

0< ,i jw <2 

2.3. Neumann orthogonal boundary condition 
We require the condition of orthogonality in physical space: 

0X X ηξ ⋅ =
 

    on  0,1, , ;mξ =   and  0,1, , nη =     (18) 

Where X


is a composite function in equation (1), which takes on values in 3R . Expanding 

equation (2) using the chain rule yields the equation 

11 12 22( ) 0g u u g u v u v g v vξ η ξ η η ξ ξ η+ + + = (19) 

This orthogonality condition is used to formulate derivative boundary conditions for the 
elliptic system. If the ”left” and ”right” boundary curves u = −1 and u = 1 are considered, we 

have 0uη =  and the orthogonality condition reduces to 

12 22 0g u g vξ ξ+ =  (20) 

Similarly, along the ”bottom” and ”top” curves v = −1 and v = 1, 0vξ =  and orthogonality 

is imposed by 

12 11 0g v g uη η+ =  (21) 

When solving the elliptic system, equation (20) determines the values of v on the boundary 
segments u = −1 and u = 1, and equation (21) determines the values of u on the boundary 
segments v = −1 and v = 1. 

To implement this numerically, we use forward difference on the boundaries u = −1 and v 
= −1 and backward difference on the boundaries u = 1 and v = 1 to compute the new values 

for ,i ju and ,i jv : 
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(22) 

2.4. The metrics of grid quality 
We choose four major quantities used to analyze the grid quality: the grid length alongξ 

direction and η direction respectively ( hξ  and hh ), the cell-area of grid(area) and the angle 

deviation from orthogonality (DO), the ratio of hξ to hh (aspect ratio ). 

11

22

1 2 3 4

2
2

h X g

h X g

DO

area

ξξ

hh

π θ

a a a a π

= =

= =

= −

= + + + −

gg

gg

  (23) 

where 12

11 22

arccos g
g g

θ
 

=   
 

,  and , 1, 2,3, 4i iα = is the spherical angle of each grid cell. 

2.5. Numerical results 
On the cube surface, the top panel Z a=  was chosen as a basis, on which a local 2D 

Cartesian coordinates ( , )x y can be built, then stretch each points on the panel to its 

circum-sphere, i.e. 

( , , ) ( , , )RX Y Z x y a
r

=

where R is the radius of the sphere, 
1

2 2 2 2( )r x y a= + + , ,a x y a− ≤ ≤ . 

Here we take 1a = , initial grid points distribution was chosen as equi-distance gnomonic 
cubed sphere grid, solving the elliptic equations (13) and (14) with Neumann orthogonal 
boundary condition equation (18), the convergence could be achieved after about 500 times 
iterations, the grid in parametric space with cell-number 44*44 was given in Figure 2.3, 

where the left sub-figure shows the initial grid points distribution in parametric space ( , )u v , 

12
0, 1, 0, 1,

22

12
, , 1, 1,

22

12
,0 ,1 ,0 ,1

11

12
, , , 1 , 1

11

( )

( )

( )

( )

j j j j

m j m j m j m j

i i i i

i n i n i n i n

gv u u v
g

gv u u v
g

gu v v u
g

gu v v u
g

− −

− −

= − +

= − − +

= − +

= − − +
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the right one shows the final grid points distribution in parametric space after numerical 
iteration. 

Figure 2.3. Initial parameter space in left sub-figure and final parameter space in right 
sub-figure with cell-number 44*44 

At present, the cubed sphere grids could be also generated by other two methods, 
including equi-angular or equi-distance gnomonic projection and conforming mapping[5], 
moreover sphere grids produced by equi-angular or equi-distance gnomonic projection are not 
orthogonal, conforming mapping and elliptic cubed sphere grids are orthogonal. Comparison 
results about the grid metrics on cubed sphere grids between the three methods were given 
below. 

We get the results under the condition that the grid cell-number is 22 22× , 44 44,×  

90 90,× 180 180× corresponding to approximate space resolution 4 , 2 , 1 , 30′  

respectively. Table 2.1 gives the maximum and minimum grid length, the maximum and 
average grid cell angle deviation from orthogonality excluding the four corners of the panel, 
the grid aspect ratio with different space resolutions on equi-angular gnomonic grids; Table 
2.2, 2.3 give the same information but on grids produced by conformal mapping and 
elliptic-smoothing methods respectively.  

Table 2.1. The grid quality on equi-angular cubed sphere grids 

with different cell-numbers. 

cell-number 
grid length angle DO(degree) aspect ratio 

max min max aver max aver 

22×22 0.1238 0.0875 27.6229 8.0579 1.0000 1.0000 

44×44 0.0620 0.0437 28.8149 8.0635 1.0000 1.0000 

90×90 0.0304 0.0213 29.4215 8.0656 1.0000 1.0000 

180×180 0.0153 0.0106 29.7109 8.0661 1.0000 1.0000 
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Table 2.2. The grid quality on conformal cubed sphere grids 

with different cell-numbers. 

cell-number 
grid length angle DO(degree) aspect ratio 

max min max aver max aver 

22×22 0.1012 0.0436 12.8989 0.9250 1.0000 1.0000 

44×44 0.0522 0.0181 12.9255 0.4625 1.0000 1.0000 

90×90 0.0260 0.0071 12.9303 0.2261 1.0000 1.0000 

180×180 0.0131 0.0029 12.9310 0.1131 1.0000 1.0000 

Table 2.3. The grid quality on elliptic cubed sphere grids 

with different cell-numbers. 

cell-number 
grid length angle DO(degree) aspect ratio 

max min max aver max aver 

22×22 0.1285 0.0299 12.9997 1.2770 1.0005 1.0000 

44×44 0.0644 0.0116 12.7061 0.6744 1.0012 1.0000 

90×90 0.0323 0.0043 12.5647 0.3500 1.0015 1.0000 

180×180 0.0173 0.0018 12.5055 1.3875 1.0030 1.0000 

Once the sphere grid on the top panel was produced, we get the whole sphere grids by 
proper solid-body rotation. Figure 2.4 shows the grid cell-angle deviation from orthogonality 
and the cell area variations on equi-angular sphere grids with cell number 44*44*6; while 
Figure 2.5, Figure 2.6 demonstrate the same information on the sphere grids generated by 
conformal mapping and elliptic equations iterations method respectively. From Figure 2.5, 
Figure 2.6, conformal mapping and elliptic-smoothing method produce the much like results, 

it can be seen that most of grid cell-angle deviation from orthogonality are not more than 10  

with the exception of these in the neighborhood of the eight vertices. Even the conformal 
mapping method, the grids adjacent to the eight corners are also not exactly orthogonal.  
Under the same condition, the equi-angular gnomonic projection produced grids of the most 
uniform size, but are non-orthogonal, which was shown in Figure 2.4; while the conformal 
and elliptic-smoothing method generate quasi-orthogonal curvilinear grids on the cubed 
sphere at the cost of gridline weak-convergence on eight corner points. 
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Figure 2.4. The left sub-figure shows the angle deviation orthogonality, the right one 
shows the cell area on equi-angular sphere grids with cell number 44*44*6. 

Figure 2.5. The same as above but on conformal mapping sphere grids 
with cell number 44*44*6. 

Figure 2.6. The same as above but on elliptic-smoothing sphere grids 
with cell number 44*44*6. 
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3. Conclusion
Basic properties of conformal mapping are utilized to improve methods of generating grids 
rom the solution of elliptic partial differential systems. Using the elliptic systems, A new kind 
of orthogonal curvilinear grid on the sphere was generated and the grid quality was evaluated 
according to four major quantities, including the grid length, cell-area, angle deviation from 
orthogonality and grid aspect ratio, moreover comparisons were made with the cubed sphere 
grids generated by equi-angular gnomonic projection and conformal mapping, the 
equi-angular gnomonic projection produced grids of the most uniform size, but are 
non-orthogonal; while the conformal and elliptic-smoothing method generate quasi 
-orthogonal curvilinear grids on the cubed sphere at the cost of gridline weak-convergence on 
eight corner points. This small defect would be eliminated if implicit method on time 
integration, which indicates that the orthogonal curvilinear spherical grid is satisfying wholly 
except for the neighborhood of eight vertices, so it can be chosen as a model grid on which 
the finite difference method or finite volume method can be implemented for numerical 
simulating of global atmosphere and ocean dynamics on large scale. 
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