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Abstract. According to the FAO (Food and Agriculture Organization), Malaysia lost 8.6% of 
its forest cover between 1990 and 2005. In forest cover change detection, remote sensing plays 
an important role. A lot of change detection methods have been developed, and most of them 
are semi-automated. These methods are time consuming and difficult to apply.  One of the 
new and robust methods for change detection is artificial neural network (ANN). In this study, 
(ANN) classification scheme is used to detect the forest cover changes in the Johor state in 
Malaysia. Landsat Thematic Mapper images covering a period of 9 years (2000 and 2009) are 
used. Results obtained with ANN technique was compared with Maximum likelihood 
classification (MLC) to investigate whether ANN can perform better in the tropical 
environment. Overall accuracy of the ANN and MLC techniques are 75%, 68 % (2000) and 
80%, 75 % (2009) respectively. Using the ANN method, it was found that forest area in Johor 
decreased as much as 1298 km2 between 2000 and 2009. The results also showed the potential 
and advantages of neural network in classification and change detection analysis.  

                             
1. Introduction 
Land use and land cover (LULC) change detection is important for many decisions making and 
management activities related to the earth surface like hydrological modeling and environmental 
management [1]. LULC provides key environmental information for many scientific purposes, and 
also to a range of human activities such as urban planning [2]. The growth of population associated 
with the climate change is found to be the main reason for the loss of forest cover over time [3]. 
Deforestation in particular has a large impact on the catchment process and biochemical cycles like 
carbon and nitrogen, soil erosion and flood [1]. Remote sensing is a valuable tool to get quick 
information about various LULC types and to monitor their changes over time [4]. In this paper, we 
have employed two Landsat Thematic Mapper images covering years 2000 and 2009 to (i) classify 
different LULC types in the state of Johor using traditional pixel based and Artificial Neural Network 
image classification techniques and (ii) to detect the LULC changes using a post classification 
method. Pixel based classification is implemented based on statistical probability method [5]. Neural 
network is a supporting tool for image processing and remotely sensed change detection. It is based 
on back propagation training algorithm [6]. Many researches [7, 8, 9, 10, and 11] showed that the 
classification accuracy is improved by neural network in comparison to the pixel based method 
mainly because the data distributions are strongly non-Gaussian in ANN whereas; the MLC uses 
Gaussian distribution parameter [12]. 
 
2. Data and methodology 
 
2.1. Study area 
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The study area considered in this study is the entire state of Johor. Johor is one of the developed states 
in Peninsular Malaysia (Figure 1). In term of the area and population, Johor is the fifth largest and 
second  populous state in Malaysia, with a total area of 19,210 km2 and population of 3,233,434  in 
2010 [13]. The largest land uses in Johor are oil palm and forest; however, most of the forested areas 
had been changed to oil palm plantations in recent years [14]. 
 
 
 

 
              
 
 
 

                                                           
 

Figure 1. Study area showing the state of Johor [15]. 
2.2. Data used 
Enhanced Thematic Mapper (ETM+) (2000) and Landsat Thematic Mapper (2009) data were used to 
perform the LULC classification. These data (level 1T) were downloaded from the Earth Explorer 
website [16], and they are corrected for geometric and topographic errors. We used 6 spectral bands 
(visible, near infra-red and shortwave infra-red) except for the thermal band to perform the 
classification. These data with 30 m spatial resolution enable the generation of moderate resolution 
LULC classes covering the entire state of Johor.   
 
2.3. Methods 
In order to obtain more accurate results, before performing the change detection both images were 
atmospherically corrected (because of the difference in months and sun angle) using Atcor2 program 
available in the Erdas Imagine software. Subsequently mosaicking and finally co-registration of 
ETM+ and TM data were performed. Before classification, the land cover types in the study area were 
defined with the help of a land use map produced by the department of Agriculture Malaysia (year 
2008). The main land cover types are forest, oil palm, urban area, rubber and water bodies. After that, 
each mosaicked images were classified using maximum likelihood (ML) and neural network 
classification techniques. ML algorithm was performed as supervised classification, and it is based on 
user defined spectral signature (training area). Training areas were selected according to the land use 
maps of years 2000 and 2008. Finally, the ML supervised classification was performed. This 
classification is a standard pixel based technique which is based on a multivariate probability density 
function of classes [6]. Whilst, Artificial Neural Network (ANN) is a technique that can simulate 
functions and it is synonymic to human brain [9]. Three types of networks are commonly used in 
remote sensing namely: Hopefield networks, Kohonen networks, and the multi-layered feed forward 
networks [5]. Unsupervised and semi-supervised classifications commonly use Kohonen networks, 
whilst Hopfield network is used in stereo matching [4]. 

In land cover classification feed forward networks are most commonly used and they are usually 
trained by back propagation algorithm.  There are three layers included in the network namely (i) the 
input layer (i.e. spectral bands used for classification) (ii) the output layer is the number of  land-cover 
categories to be generated and (iii) the hidden layer that connects components of the  input layer and 
the output layer by a weighted channel [12]. In this study, the input layer is the 12 input nodes 
representing the spectral bands (two multispectral images) and the output layer has 6 nodes, which are 
the 6 land cover classes, (including clouds). The rate of training was kept to 0.2 and the training 
momentum rate of 0.9 was used. The training root mean square error (RMSE) was set to 0.1, and then 
the classification was performed. After classification, the accuracy of the classified images was 
assessed using reference data (land use maps of year 2000 and 2009).  A total of 250 random points 
were selected from the images generated via a stratified random sampling method. The accuracy was 
assessed using error matrices (overall, user’s and producer’s accuracies and Kappa statistics). Finally, 
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a post classification change detection technique was adopted to detect the LULC changes in Johor 
between 2000 and 2009 [6].   
 
3. Results and discussions  
 
3.3. Landuse/landcover classification 
The final LULC (Land use and land cover) maps presented in figure 2 and figure 3 show that the 
major classes are forest, oil palm, rubber, city and water. An evaluation of accuracy of the classified 
images (table 1) shows that the overall accuracy for Artificial Neural Network (ANN) classification is 
75% (year 2000) and 80% (year 2009), and it is higher than the pixel based classification result of 
68% (2000 image), and 75% (2009 image).  
 
3.2. Change detection 
Since the ANN technique provided higher accuracy compared to the MLC classifier, we used the 
classified images with ANN technique to detect the forest cover changes between 2000 and 2009. The 
total forested area as estimated using ANN technique in year 2000 is 6191 km2, and this number 
decreased to 4461 km 2 in year 2009 (table 2). The reason for the changes is mostly due to the 
development of oil palm plantation that plays a major role in the country’s economy. Moreover, 
development of the Iskandar Malaysia region in Johor could have claimed some forested areas for the 
development of urban areas. 

                             A                                                                              B 
 
Figure 3. Land use/land cover maps produced using (A) maximum likelihood and (B) artificial neural 
network classifiers for year 2000 and 2009. 
 

Table 1. Accuracy assessment of maximum likelihood and artificial neural network classifiers  
 

 Maximum likelihood classification 2000 Neural network classification  
2000 

Land use -
land cover 

Producer’s 
accuracy  

User’s 
accuracy  

Kappa Producers 
accuracy 

Users 
accuracy 

Kappa 

 (%) (%)  (%) (%)  
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Forest 74.19 76.67 0.533 78 80 0.85 
Oil palm 80 64 0.54 87.18 78 0.82 

city 69.57 69.57 0.6 78.72 74 0.72 
Water 75 60 0.58 77 68 0.66 

Rubber 20 100 1 39.47 90 0.88 
 Maximum likelihood classification 2009 Neural network classification2009 

Land use -
land cover 

Producer’s 
accuracy 

(%) 

User’s 
accuracy 

(%) 

Kappa Producers 
accuracy 

(%) 

Users 
accuracy 

(%) 

Kappa 

Forest 71,43 66.64 0.65 78.72 80 0.8 
Oil palm 91.3 77.78 0.63 92 70 0.79 

City 60 75 0.72 68.18 86 0.87 
Water 55.56 83.33 0.81 74.14 86 0.85 

Rubber 85 77.22 0.7 68 74 0.67 

                                        
                                      Table 2. Areas change in Johor for 2000 and 2009 

 
4. Conclusion 
This study used two classification methods, namely Artificial Neural Networks (ANN) and Maximum 
likelihood (ML) to classify different land use and land cover types in the state of Johor. The highest 
classification accuracy was obtained by ANN, and the Landsat images classified using this method 
was used to detect the change notably in forest cover between 2000 and 2009. It was found that during 
a period of 10 years Johor lost approximately 28% of forested areas. It is suggested that the forested 
areas must be monitored on a continuous manner to detect any illegal deforestation. Also, the state 
government should make all forested areas as protected forest in order to prevent further loss of this 
valuable natural resource in the state.  
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