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Abstract: Layover and Shadow are inevitable phenomenena in InSAR, which seriously 

destroy the continuity of interferometric phase images and present difficulties in the follow-up 

phase unwrapping. Thus, it’s significant to detect layover and shadow. This paper presents an 

approach to detect layover and shadow using the auto-correlation matrix and amplitude of the 

two images. The method can make full use of the spatial information of neighboring pixels and 

effectively detect layover and shadow regions in the case of low registration accuracy. 

Experiment result on the simulated data verifies effectiveness of the algorithm. 

1.  Introduction 

InSAR is an important remote sensing technique to achieve Digital Elevation Model (DEM). It has the 

characteristic of all-weather, all-time, long-range and high-resolution
[1]

. InSAR has attracted much 

attention all over the world since it was firstly brought forward inthe mid-17th century
[2] [3]

. 

In the past two decades, some research has been presented in the literatures about layover and/or 

shadow detection, phase unwrapping, DEM inversion and so on. However, they did not make full use 

of the information of the interferometric signal. For example, Andrew J. Wilkinson has deep research 

on the statistical analysis and modeling in layover and shadow regions
[4]

; and Liu Xiang-le has 

proposed resolving the layover problem using the unitary ESPIRT algorithm on the frame of multi-

baseline InSAR
[5]

. But the data of multi-baseline InSAR is difficult to obtain.  

In this paper, a method is presented to detect layover and shadow using the amplitude and auto-

correlation matrix of the two images. It can make full use of the spatial information of neighboring 

pixels and effectively detect layover and shadow regions in the case of low registration accuracy. 

Experiment results on the simulated data verifyeffectiveness of the algorithm.  

2.  The Geometry Model and Statistical Model in Layover and shadow regions 

2.1.  The Geometry Model in Layover and shadow regions 

Layover and shadow are ubiquitousphenomenain SAR images which are caused by the radar imaging 

geometrical relationship, especially in steep hills. 

Layover is formed due tothe fore-slope angle θgreater than the SAR side-looking angle β, causing 

that the echo signal of slope top arrives SAR receiver ahead of that of slope bottom. Because there is 

the same distance between sensor and these regions including L1、L2、L3, the back-scattered energy 

from these regions will overlay in the same pixel of SAR image, as depicted in figure 1.Consequently, 

layover manifests as bright regions in SAR images. 
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However, when the back-slope angle α is greater than the SAR side-looking angle β, no useful echo 

wave can be received by SAR receiver because the higher object will block the back-slope areas. Thus, 

shadow is formed by thermal noise or speckle noise. As shown in figure 1, the back-slope areas such 

as S, cannot return a signal message and manifests as black regions in SAR images. 

 

 

Figure 1.Sketch of layover and shadow 

Through the above analysis, the echo intensity in layover is far too high relative to other 

homogeneous regions (usually 3 times stronger
[6]

) while the echo intensity in shadow is far too low 

relative to other homogeneous regions (usually 10
2
 times weaker

[6]
). The SAR amplitude of layover is 

much higher than other regions while that of shadow is rather lower than other regions reflected in 

amplitude map. 

2.2.  The Statistical Model in Layover and shadow regions 

Assuming that the SAR images are accurately coregistered and the interferometric phases are flattened. 

And the complex data vector, denoted as S(i), of a pixel pair (corresponding to the same ground area) 

of the coregistered SAR images can be formulated as follows: 
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the additive noise term, superscript T denotes matrix transpose, i denotes the true terrain 

interferometric phase to be estimated, and  denotes the Hadmard product. In(1), ( )iS is called the 

spatial data vector and can be modeled as a joint zero-mean complex circular Gaussian random vector. 

The corresponding auto-correlation matrix, denoted as ( )iR , of ( )iS is given by 
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where ( )ixR  is called the correlation coefficient matrix of the pixel pair i, I is a 2×2 identity matrix, 

rmn(i) (0≤rmn(i)≤1, m=1,2 and n=1,2) are the correlation coefficients of the pixel pair i between the 

satellites m and n, {}E denotes the statistical expectation, superscript H denotes vector conjugate-

transpose, 2

s is the echo power of the pixel pair i and 2

n is the noise power. 
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In practice, the statistical auto-correlation matrix given by(2) can be estimated by the 

corresponding sample auto-correlation matrix of independent and identically distributedsamples
[7]

. The 

independent and identically distributed samples can be obtained under the assumptions that the 

neighboring pixels have an identical spatial steering vector (i.e., an identical terrain height) and the 

complex reflectivity is independent from pixel to pixel. 

3.  Layover and Shadow detection based on the auto-correlation matrix  

3.1.  The estimation of auto-correlation matrix  

In practice, the desired pixel pair and its neighboring pixel pairs are used to jointly perform the auto-

correlation matrix estimation. An example to formulate the joint data vector, denoted by ( )iSi , is 

shown in figure 2, where circles represent SAR image pixels and i denotes the centric pixel pair
[7]

. 
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Figure 2.Formulation of joint data vector using a 3×3 pixel pair window 

The joint data vector ( )iSi , shown in figure 2, can be formulated as 

 
T T T T T T( ) [ ( 4) ( 3) ( ) ( 3) ( 4) ]i i i i i i    Si s s s s s， ，...， ，...， ，  (4) 

which implies that the number of the neighboring pixel pairs is 8, and ( )iSi is a 18×1 vector. The 

corresponding joint auto-correlation matrix is given by 
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Under these assumptions that the neighboring pixels have an identical terrain height., the array 

steering vectors of the pixel pairs in ( )iSi become identical, i.e., 
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In the sense of statistical expectation, ( )ixiR only have signal components, which can be eigen-

decomposed into 

 
KEVD

( ) ( ) ( )

1

( ) k k k H

r r r

k

i 


 xiR β β  (7) 

where K is the number of the principal eigenvalues 
( )k

r (k = 1,2,…,K)of ( )ixiR , and 
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It is evident that ( )( ) k

ra φ β are orthogonal to each other under the definition of ( )a φ , which 

implies that the joint signal subspace can be spanned by ( )( ) k

ra φ β . ( )iR of(8) can be eigen-

decomposed into 
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where ( )k

rxβ  are the principal eigenvectors of ( )iR  that span the same joint signal subspace as 

spanned by ( )( ) k

ra φ β , and ( )l

nβ  (l = 1,2,…,18-K) are the corresponding noise eigenvectors of ( )iR  

that span the joint noise subspace. 

As we know, the correlation coefficient from different regions is different including layover and 

shadow regions
[8][9]

. Because the signal from shadow is approximated at Gaussian noise, the 

correlation coefficient reaches zero. Meanwhile the correlation coefficient of a layover can be 

expressed the weight sum of the correlation coefficient of each overlap area. There is a close 

relationship between the correlation coefficient and the eigenvalue clustering of joint auto-correlation 

matrix, which can be used to detect layover and shadow. The number of the large eigenvalues of joint 

auto-correlation matrix is same as the number of the overlap signal of the pixel i. In ideal 

circumstances, all the eigenvalues of joint auto-correlation matrix are noise eigenvalues in shadow. 

3.2.  Layover and Shadow detection based on the eigenvalues clustering of auto-correlation matrix 

In practice, the ideal eigenvalue clustering of joint auto-correlation matrix is hard to achieve because 

of the coregistration error, additive noise or multiplicative noise. A common solution is to use the 

estimation of the signal number based on information theory. Some conventional criterions include 

Akaike Information Criterion (AIC), Minimum Description Length (MDL) criterion and Efficient 

Detection Criterion (EDC)
[10]

. 

This paper chooses the AIC, given by 

 AIC( ) 2 P (M 1) ln ( ) 2 ( 1) (2M 1)s s s s sn n n n n              (10) 

where P is the multilook number and ( )   is a likelihood function defined as 
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where M is the number of all eigenvalues of joint auto-correlation matrix ( )iR  and i  is one of the 

eigenvalues. sn is the number of the eigenvalue to be estimated. 

Then 

 
1,...,M

dim(R) min AIC( )
s

s
n

n


  (12) 

which represents the dimension of the signal subspace (i.e., the signal number). 

This paper estimates the joint auto-correlation matrix pixel by pixel and then uses the above-

mentioned AIC to detect layover and shadow. The results have showed that we can define a threshold 

(such as two) forthe signal number. If the signal number is greater than two, the pixel i is 

discriminated the pixel from layover region.If the signal number is less than two, the pixel i is 

discriminated the pixel from shadow region. And in other cases, the pixel i is discriminated the pixel 

from normal region. 
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3.3.  Experiment Procedures 

The algorithm flow chart is shown in figure 3 through above theoretical analysis. 

 

 

Figure 3.The algorithm flow chart 

4.  Simulation Experiment 

Due to the difficulty of obtaining the real InSAR data, this paper performs an experiment with the 

crater data simulated by Space-Borne Radar Advanced System. The image size is 1085×850 pixels. 
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Figure 4.DEM of the crater 
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Figure 5.Amplitude of the crater 

 

 

Figure 6.Detection result of Layover 

 

Figure 7.Detection result of Shadow

The simulated crater,whose altitude is less than 951 meters,originates SRTM measured data and its 

DEM is shown in figure 4. The interferometry amplitude of the crater is shown in figure 5 in which 

layover and shadow regions have been marked with the word L or S respectively. 

Table1.The comparison of false ratesin layover and shadow 

method Layover Shadow 

reference [3] 81.7% 79.6% 

reference [5] 82.3% 89.5% 

this paper 90.4% 93.1.7% 

Range

A
zi

m
ut

h

100 200 300 400 500 600 700 800

100

200

300

400

500

600

700

800

900

1000

Range

A
zi

m
ut

h

100 200 300 400 500 600 700 800

100

200

300

400

500

600

700

800

900

1000

Range

A
zi

m
ut

h

100 200 300 400 500 600 700 800

100

200

300

400

500

600

700

800

900

1000

Range

A
zi

m
ut

h

100 200 300 400 500 600 700 800

100

200

300

400

500

600

700

800

900

1000

35th International Symposium on Remote Sensing of Environment (ISRSE35) IOP Publishing
IOP Conf. Series: Earth and Environmental Science 17 (2014) 012235 doi:10.1088/1755-1315/17/1/012235

5



 

 

 

 

 

 

 

The detection results of layover and shadow are shown in figure 6 and figure 7 respectively where 

the white areas are the pixels belonging to layover or shadow. The results imply that layover and 

shadow can be detected effectively by the proposed method in this paper, which is also verified 

compared with other methods shown in table.1. 

5.  Conclusions 

This paper analyzes the feasibility of experiment in theory in the first place. Then the effectiveness of 

experiment is validated by simulation. The experiment result implies that layover and shadow can be 

detected effectively by the method above, which has provided the reliable basis for the following 

InSAR processing. The next step is going to apply the method in the realmeasurement data to enhance 

the engineering practicality. 
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