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Abstract. Commonly, it requires two constraints imposed on the linear spectral mixture 
analysis (LSMA).One constraint is the abundance of sum-to-one, which requires the abundance 
fractions of materials presented in an image pixel to be one and is easy to deal with. The other 
constraint is that any abundance fractions are always nonnegative and difficult to solve with 
analytical solution. Most of approaches that provide the solution for the latter problem of 
LSMA use an optimization or maximization procedure. The results of solution resort to 
optimization strategies. The Leontief input-output model, of which parameters are very similar 
to LSMA, is represented by a linear system of equations and the system has a unique 
nonnegative solution. In this paper, we considered how to determine the parameters of LSMA 
model, and based on the open Leontief input-output model, we presented a fully constrained 
linear spectral (FCLS) mixture analysis method for estimating material abundance in spectral 
mixture pixel. The new FCLS method can not only make the abundance fractions of materials 
be nonnegative, but also keep them less than one, that always obtained by normalizing 
procedure in other methods. We also examine a number of approaches, previous FCLS and 
non-negative matrix factorization (NMF) spectral un-mixing, closely related. A series of 
computer simulations are conducted to demonstrate the performance of the proposed method in 
material quantification. 

1.  Introduction 
In recent years, many different algorithms were developed for spectral un-mixing of hyper-spectral 
imagery. Most spectral un-mixing algorithms think an observed spectrum is linear combination of a 
limited number of ‘pure’ spectra, where the coefficient of each ‘pure’ spectrum is its abundance in the 
measured pixel of the imagery scene. 

Over time, most algorithms for spectral un-mixing need to perform two steps, the first step is to 
find ‘pure’ spectrums, which is usually labeled as end member extraction. The other step is to 
determine the corresponding abundances of each ‘pure’ spectrum in the mixed imagery pixels. The 
latter is usually labeled as spectral un-mixing, or the spectral mixture analysis. Sometimes the ‘pure’ 
spectrums of end member can be easily got from the spectral library of JPL, USGS etc. So, our paper 
focuses only on the latter problem. 
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An approach, which is first proposed by Chang etc, turns the un-mixing problem into a non-
negatively constrained least-squares problem that can be solved using the Lawson and Hanson 
techniques. And this was the first solution obey the ANC and ASC constrains and called FCLS by 
Chang [1]. Soon after, other algorithms followed that also allowed to find this solution through other 
approach such as Quadratic programming, hierarchical Bayesian, non-negative matrix factorization 
(NMF), and so on. Most of the approaches that provide the FCLS solution use an optimization or 
maximization, or require a random sampler from some distribution like NMF. The result accuracy can 
be got arbitrarily by modifying the algorithmic parameters, they all do not provide an analytically 
solution [2]. 

In this paper, we investigate Linear Mixture Model with the open Leontief Input-output model, 
which can provide a nonnegative matrix and make solving the solution more easily.  

2.  Linear Mixture Model 
Classical spectral mixture model can be represented as follows: 

0r n M                                                                 (2.1) 

Where 0n  is noise, can be interpreted as a measurement error or some unknown spectral, which 

proportion in the pixel of same imagery scene is small. r is used to represent spectral reflectance 
vector of the pixel. Matrix [ ... ] 1 kM m m  is used to represent spectral reflectance of different 

material in the same imagery scene and  is used to represent the abundance of different material 
associated with r . 

3.  The open Leontief input-output model 
The open Leontief input-output model, which was originally developed by the economist Wassily 
Leontief, can be denoted as follows: 

1 1 2 2i i i in n ix a x a x a x d                                      (3.1) 

Where 0jd  , for 1, ,j n  . This leads to the linear system 
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Where 0ija   for each i and j , 
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 .The solution vector X must be nonnegative and unique. 

We can get this proof in [3]. 
It is notable that the number of unknowns of open Leontief input-output model is equal to the 

number of equations. And for the LSMA of hyper-spectral un-mixing, the number of unknowns is 
always far greater than the number of equations. 

4.   The proposed LSMA method in this paper 
What’s the relationship between the model of LSMA and the open Leontief input-output system? 
Think that r in equation (2.1) represents reflectance of all spectral bands we measured, then 
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, where n is number of spectral bands we used. So the equation (2.1) 

can be written in the following form 
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Value i is less than one with the ASC constraint. 

Because the solution of this equation is not always analytical, so the noise can be omitted from the 
equation (4.1) in the least squares sense.  
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, the k is usually larger than n . Without any constraints, the least squares estimate of 

  for model LSMA is given by 1( )T T r  M M M .Matrix 1( )T TM M M M is called the projection 

matrix, which project any vector r to the column space of matrix M , the j  can be negative. If we 

select some spectral bands to compute the j , maybe we can decrease the noise of the model. 

Typically, the selection makes the number of bands equal to the number of material signature. 
As the fact of the reflectance of any broad spectral band is less than 1, equation (4.2) can be 

rewritten as a linear system: 
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We denote 
n


M

A  for convenient. The entries of coefficient matrix A  have two important properties: 

  0ijm

n
  for each i  and j . 
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  for each j . 

The Open Leontief Input-output model has same properties. That is the critical point to make the 
solution nonnegative. So the last equation can be written as   

( )
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   A                                                              (4.4) 

Then solution of equation (4.2) can be given by 
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It is obvious that   1
I

A is nonnegative. An iteration procedure, which is similar to the iteration in 

[4], is used here to get the solution from equation (4.5), and we use 1( )T T r  M M M  as the initial 
value of iteration procedure.  

5.   Computer Simulation and Experiment 
In this section, a series of computer simulation and experiment to evaluate performance of the new 
methods were presented, as comparison, the previous FCLS, which is first proposed by Chang and the 
NMF method, were also used here. All of three methods are implemented in MATLAB. 

Two experiments were designed to demonstrate the performance of the FCLS (Chang), NMF and 
the new FCLS (Leontief) method in following simulations. 1) When the information of all material 
spectral signatures is completely known with some noise information was added, 2) when some false 
information (other material signature, noise and so on) is used. 

A set of reflectance spectra selected from ENVI spectral library was used for performance 
evaluation. This set of reflectance spectra contains five spectra, dray grass, sage brush, black brush, 
walnut leaf and dark reddish soil. These spectra in the range of 415nm -2500nm were convolved to 
15nm spectral bands as shown in Figure 1. 
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Figure 1. Material reflectance spectra used for mixing pixel simulation 
Each simulated data consisted of 100 pixel vector, which were numbered from 1 to 100. First, we 

create five random data series with MATLAB function ‘rand’, the values of these data series are in 
range of 0-1 and the length of random data series is 100, which is same to the pixel number of the 
simulated data. Each series is treated as weight coefficient associated with a material abundance. Then 
the abundance of different material in the simulation data pixel can be easily got from follow equation: 

i
i k

 
w

                                                                    (5.1) 
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Where iw  denotes the weight coefficient vector associated with a material abundance, k denotes 

the number of spectra involved in simulation pixel data. The pixel values of spectral mixing are given 

by
1

k

i ir  m . 

Finally, the White Gaussian noise was added to each pixel vector to achieve a 30:1 SNR, which 
was defined as average reflectance over all pixels divided by the standard deviation of the noise. 

5.1.  Experiment : all spectral reflectance is completely known 
In this experiment, three reflectance spectra, dry grass, dark reddish soil and walnut leaf, were used to 
form a reflectance matrix 1 2 3[ ]M m m m , with their associated abundance fractions given 

by  1 2 3

T    .We denotes the solution as  ,it is obviously that the smaller the difference 

  ,the better the performance. Ideally, the solution  is equal to . 
In order to compare the performance of different methods, the same simulation data was also used 

to evaluate the quantification performance of NMF and FCLS (Chang) methods. All three methods are 
performed, only results of difference   in detection of walnut leaf leaves are shown in Figure 2. 
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Figure 2. Different    of walnut leaf quantifications along pixels 
The square sums of difference   are 0.0071 for FCLS (Leontief), 0.0052 for FCLS (Chang 

and 0.0576 for NMF. Obviously, two FCLS methods have a better performance than NMF methods. 
The FCLS (Chang) and FCLS (Leontief) performed nearly same. The FCLS (Chang) method has 
produced best result. 

5.2.  Experiment: all spectral reflectance are known, but some spectrums are not contained in the 
simulated data. 
In this experiment, five reflectance spectra, dry grass, dark reddish soil, walnut leaf, black brush and 
sagebrush were used to form a reflectance matrix [ ] 1 2 3 4 5M m m m m m , with their 

associated abundance fractions given by  1 2 3 4 5

T      . To compare different 

methods, results of difference   in detection of walnut leaf leaves are computed and shown in 
Figure 3. 

35th International Symposium on Remote Sensing of Environment (ISRSE35) IOP Publishing
IOP Conf. Series: Earth and Environmental Science 17 (2014) 012223 doi:10.1088/1755-1315/17/1/012223

5



 
 
 
 
 
 

 

The results of three methods are 0.1077 for FCLS (Leontief), 0.0644 for FCLS (Chang) and 0.0680 
for NMF. Unlike Figure 2, it is obviously that the detection performance of FCLS (Leontief) was 
considerably decreased.  
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Figure 3. Different    of walnut leaf quantifications along pixels 
But it worth noted that the results of Leontief are more smooth or robust in two experiments. 

6.  Conclusion 
In this article, we have investigated the linear spectral mixture with the Leontief model. After 
considering how to determine the parameters of LSMA model, we presented a fully constrained linear 
spectral (FCLS) mixture analysis method for estimating material abundance in spectral mixture pixel. 

Because of the matrix   1
I

A is nonnegative, the solution of the LSMA model can be kept 

nonnegative more easily.  
Two computer experiments were designed and conducted to demonstrate the performance of the 

FCLS (Chang), NMF and the new FCLS (Leontief) method. The FCLS (Chang) method has produced 
best results. The new FCLS (Leontief) method is better than NMF method in first experiments, and 
worse in second experiments. But the new FCLS (Leontief) method has minor fluctuation in two 
experiments. 

To conclude, the new method seems to be robust or smooth in estimating the abundance fractions 
of walnut leaf spectrum in computer simulations and experiments. However, the precision of result is 
unsatisfied so this method needs further investigation to improve the results. 
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