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Abstract. The hyperspectral image (HSI) processing community has witnessed a surge of 

papers focusing on the utilization of sparse prior for effective HSI classification. In sparse 

representation based HSI classification, there are two phases: sparse coding with an over-

complete dictionary and classification. In this paper, we first apply a novel fisher 

discriminative dictionary learning method, which capture the relative difference in different 

classes. The competitive selection strategy ensures that atoms in the resulting over-complete 

dictionary are the most discriminative. Secondly, motivated by the assumption that spatially 

adjacent samples are statistically related and even belong to the same materials (same class), 

we propose a majority voting scheme incorporating contextual information to predict the 

category label. Experiment results show that the proposed method can effectively strengthen 

relative discrimination of the constructed dictionary, and incorporating with the majority 

voting scheme achieve generally an improved prediction performance. 

1.  Introduction 

Hyperspectral imaging sensors acquire digital images in hundreds of continuous narrow spectral bands 

spanning the visible to infrared spectrum [1]. Different materials usually are spectrally separable as 

they reflect electromagnetic energy differently at specific wavelengths. This discriminative ability 

based on their spectral characteristics contributes for HSI classification tasks.  

Recently, inspired by the success of compressive sensing (CS), sparse representation model based 

classification (SRC) framework has been proposed to solve many computer vision and pattern 

recognition tasks. The query signal is collaboratively coded over a dictionary of atoms with some 

sparsity constraint, and then classification is performed based on the coding coefficients and the 

dictionary. Sparse model based algorithms have been investigated successfully in areas like signal 

reconstruction [2], motion segmentation [3], image super-resolution [4], face recognition [5], target 

detection and classification in remote sensing field [6], where the usage of sparsity as a prior often 

leads to state-of-the-art performance. 

In sparse representation based HSI classification, there are two phases: sparse coding over a 

dictionary and classification. In this paper, the proposed optimization dictionary construction employs 

a similarity measure to capture the relative difference among different classes. The samples for a 

specific class are then selected according to the similarity measurement. The competitive selection 

strategy ensures that atoms in the resulting over-complete dictionary are the most discriminative. On 

the other hand, motivated by the assumption that spatially adjacent samples are statistically related and 

even belong to the same materials, a majority voting scheme incorporating contextual information is 
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introduced to predict the category label. Three groups of experiments are conducted on two public 

available dataset to verify the effectiveness of the proposed algorithm. The results demonstrated the 

efficiency and enhanced accuracy of the proposed methods. 

The remainder of this paper is structured as follows. Section 2 provides a brief review of the 

sparse representation model based classification. Section 3 proposes the fisher discriminative 

dictionary learning method and the majority voting scheme. Section 4 presents the experiment 

results and comparisons. Finally, the paper is concluded in section 5. 

2.  Sparse representation model based HSI classification 

Naturally, the signals tend to have a representation biased towards their own class, i.e. the sparse 

representation is mainly formed from its own class. The dictionary consists of randomly chosen 

samples of each specific class. The final label of the query pixel is assigned with the sparse 

coefficients which encodes the class discriminative information. 

Suppose M 1R x  is an M-dimensional unlabelled hyperspectral data. Then x  can be written as a 

sparse linear combination of all the training samples as 

                                                                 x = Aθ                                                                             (1) 

where A  is a M×N dictionary whose each column corresponds to training samples of every class. θ  

is an unknown sparse vector. Given the dictionary A, we can formulate the sparse representation in the 

following equation 
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  x = Aθ                                                            (2) 

where the 
0|| . ||  denotes the 0L  norm which is defined as the number of the nonzero entries in the 

vector. The aforementioned problem is NP-hard, fortunately they can be approximately solved with 

three major methods. If   is sparse enough, the L0 constraint can be relaxed to L1 norm, then convex 

programming techniques [7] can be adopted to solve the problem. Another solution is greedy pursuit 

algorithms such as Matching Pursuit (MP) [8], Orthogonal Matching Pursuit (OMP) [9] algorithm, 

Simultaneous Orthogonal Matching Pursuit (SOMP) algorithm [10] and Subspace Pursuit (SP) [11]. 

And also the iterative thresholding [12, 13] is effective. In this paper we use the L1 toolbox to pursue 

the sparse vector.  

When the sparse vector is obtained, the class of observation x  can be determined directly by the 

characteristics of the recovered sparse vector ̂ . It assigns the class with the minimum residual to x  
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where the Kth residual is defined as
 2( ) || || 1,2,...,K K Kr K C   x x A  . And 

K
A  denotes the 

subdictionary and K denotes the coefficients corresponding to
K

A . 

3.  Discriminative Dictionary Learning and Majority Voting Scheme 

3.1. Fisher discriminative dictionary learning 

In sparse representation model based hyperspectral image classification, the dictionary usually must be 

predefined. Chen Yi et al. [14,15] randomly selected the labelled training samples of all classes as the 

dictionary to code the query hyperspectral data. However the lazy dictionary used in [14,15] may not 

be effective enough to represent the query image due to the uncertain and noisy information in the 

original training samples. And also randomly chosen training samples can be not fully representing the 

discriminative information of each class. Meng Yang et al. [16] proposed fisher discriminative 

dictionary learning (FDDL), which aims to learn the space where the given signal could be well 

represented or coded for processing from the training samples. One contribution of this paper is 

introducing the FDDL method in hyperspectral image to achieve discriminative and concise or fuzzy 

dictionary. 

35th International Symposium on Remote Sensing of Environment (ISRSE35) IOP Publishing
IOP Conf. Series: Earth and Environmental Science 17 (2014) 012222 doi:10.1088/1755-1315/17/1/012222

2



 

 

 

 

 

 

According to aforementioned description, a structured dictionary 
1 2[ , ,..., ]CD D D D  needs to be 

learned, where 
iD  is the class-specified sub-dictionary associated with the class iA , and C is the total 

number of all classes in hyperspectral image of interest. The set of training samples is denoted by 

1 2[ , ,..., ]CA A A A , where 
iA represents the subset of the training samples of class i . The coding 

coefficients of A  over D  is denoted by A  , i.e. A DX , where 
1 2[ , ,..., ]CX X X X  and iX  is the 

sub-matrix containing the coding coefficients of 
iD  over 

iA  . Apart from requiring that D  should 

have powerful reconstruction capability of A , we also require that D  should have powerful 

discriminative capability of images in A . Finally the FDDL model can be presented as: 
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where ( , , )r A D X  
is the discriminative fidelity term and is defined as  
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where 2|| ||i i FA DX  denote the representation of 
iA  over D . Since 

iA  should be well represented by 
iD  

but not by ,j j iD . That implies that corresponding coefficients i

iX  should 2|| ||i

i i FXA D  be small, 

while the term j

iX should have nearly zero coefficients such that 2|| ||j

j i FD X  is small.  
1|| ||X  is the sparsity 

constraint; To make the coding coefficients discrimination, i.e. X , according to Fisher discrimination 

criterion[17], by minimizing the within-class scatter of X , denoted by ( )WS X  , and max the between-

class scatter of X , denoted by ( )BS X . Because the function ( ( ) ( ))W Btr S SX X  is non-convex and 

unstable, the elastic term 2|| ||F X  was added to overcome the problem. 

3.2. Majority voting scheme 

Apart from the spectral signature, contextual information is proved important for HSI classification. In 

empirical observations spatially adjacent samples are statistically related and even belong to the same 

materials (same class). Hyperspectral image classification based on sparse representation usually is 

performed on spectral information of single pixel independently. However, the spatial/contextual 

information lacks enough attention. In this paper, In addition to the constraints on sparsity and 

reconstruction accuracy when recovering the sparse vector, we exploit the smoothness of the HSI 

pixels, which indicates that the neighboring HSI pixels have similar spectral characteristics as well as 

belong to the same class [15]. We propose a majority voting scheme, which incorporates contextual 

information to predict the category label. The class of test sample is now assigned by the local 

neighboring pixels instead of itself. We define the 4 neighbors’ constraint as Laplacian smoothness 

constraint (LSC) and 8 neighbors’ constraint as Auto-Regressive smoothness  constraint (ARSC). In 

proposed voting scheme, the class label of center pixel x  is voted by the local neighboring (4 or 8) 

pixels and the most ballots win, i.e. if half of the pixels containing x and its spatial neighbors are 

belonging to K, then the x  is labeled as K. 

4.  Experiments and analysis 

The test hyperspectral image in our experiments is the 220-bands Airborne Visible/Infrared Imaging 

Spectrometer (AVIRIS) image Indiana Pine of spatial dimension 145×145. It contains 16 ground-

truth classes, most of which are different kinds of crops. For each class, we randomly choose 10% of 

the labelled samples for training samples and the rests for testing, which is presented in Figure 1. 

35th International Symposium on Remote Sensing of Environment (ISRSE35) IOP Publishing
IOP Conf. Series: Earth and Environmental Science 17 (2014) 012222 doi:10.1088/1755-1315/17/1/012222

3



 

 

 

 

 

 

       (a)  (b)  (c)  (d) 

Figure 1.  AVIRIS Indian Pine Data Set: (a) Ground Truth; (b) Training samples; (c) Test 

samples; (d) Class information. 

Firstly, we verify the performance of FDDL on binary separable problem. Corn_notill and 

Corn_min are experimented. We compare the classification results obtained by FDDL dictionary and 

the one of the original dictionary. The number of atoms and classification accuracy (CA) is evaluated. 

                 (a) (b) (c) 

Figure 2. Corn_notill and Corn_min samples: (a) Ground Truth; (b) Classification 

Result with Usual Dictionary; (c) Classification Result with FDDL Dictionary. 

 

Table 1. Comparison between usual dictionary and FDDL Dictionary. 

 Classification  Accuracy (CA) 

Item Atoms Corn_notill Corn_min 

Usual Dictionary 180 63.95% 62.58% 

FDDL Dictionary 151(Average) 89.32% 86.71% 

Then, two experiments are conducted to demonstrate the advantage of the majority voting scheme. 

In group one, the Soybean_notill and Soybean_min are picked out. And in group two, the Corn_notill 

and Corn_min are selected. Two kinds of smoothness constraints are applied to improve the original 

classification result. Three maps obtained by the Laplcian smoothness constraint, AR smoothness 

constraint and these two constraints simultaneously are observed. Classification performances are 

finally compared visually and quantitatively to the original one. The average classification accuracy is 

illustrated as below. 

Original map CA=67.72% CA=78.83%  CA=82.15%     CA=84.04% 

 

      (a)      (b)      (c)       (d)       (e) 

Ground-truth CA=84.19% CA=94.94% CA=95.45%  CA=97.03% 

 

             (f)            (g)          (h)         (i)        (j) 
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Figure 3. Classification maps and classification accuracy (CA) with smoothness constraint: (a) 

Original map; (b) Original classification map of Soybean_notill; (c) LSC; (d) ARSC; (e) LSC 

and ARSC; (f) Ground-truth map; (g) Original classification map of Soybean_min; (h) LSC;  (i) 

ARSC; (j) LSC and ARSC. 

Original map  CA=84..70% CA=93.97%  CA=93.58%    CA=95.76% 

 

(a)      (b)     (c)        (d)       (e) 

Ground-truth CA=78.14% CA=88.21%   CA=89.43%  CA=91.06% 

 

(f)     (g)     (h)        (i)        (j) 

Figure 4. Classification maps and classification accuracy (CA) with smoothness constraint: (a) 

Original map; (b) Original classification map of Corn_notill; (c) LSC; (d) ARSC; (e) LSC and 

ARSC; (f) Ground-truth map; (g) Original classification map of Corn_min; (h) LSC;  (i) ARSC; 

(j) LSC and ARSC. 

We also illustrate the effect on the whole image classification performance. Figure 5 (c) shows the 

improved classification map with two constraints simultaneously. Then we apply FDDL and majority 

voting scheme simultaneously to the binary separable problem，We directly use the majority voting 

scheme on the basis of experiment result shown in Figure 5. We can see classification accuracy is 

improved significantly. More detail can be seen in Figure 6 and Table 2. 

  
 

   

(a) (b) (c) (a) (b) (c) 

Figure 5. Classification maps and overall 

accuracy (OA): (a) Ground-truth map; (b) 

Original classification map (OA= 64.6838%); (c) 

Improved classification map (OA=87.665%); 

Figure 6. The effect of FDDL and majority voting 

scheme: (a) Classification map obtained with 

FDDL dictionary; (b) Classification map of 

Corn_notill; (b) Classification map of Corn_min. 

 

Table 2. Classification rate with majority voting scheme. 

 
Original 

Classification Accuracy 

Classification Accuracy 

with Voting Scheme 

Item Atoms Corn_notill Corn_min Corn_notill Corn_min 

Usual Dictionary 180 63.95% 62.58% 85.34% 84.65% 

FDDL Dictionary 151 89.32% 86.71% 97.14% 92.45% 
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5.  Conclusion  

In this paper, We first apply a novel fisher discriminative dictionary learning (FDDL) method to 

improve the dictionary in the sparse representation model. The FDDL aims to learn a structured 

dictionary whose sub-dictionaries have specific class labels. The FDDL’s discrimination ability is that 

each sub-dictionary of the whole learned dictionary has good representation power to the samples of 

the corresponding class. Then, motivated by the assumption that spatially adjacent samples are 

statistically related and even belong to the same materials (same class), we present a novel majority 

voting scheme, which use reconstruction error and contextual smoothness character simultaneously. 

Experiment results show that FDDL can efficiently achieve a more discriminative and concise 

dictionary. And the proposed majority voting scheme utilizing spatial information incorporating with 

spectral information significantly improves the classification performance. Extensive experiments 

show our approach achieve generally a better prediction performance.  
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