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Abstract. This paper presents a comprehensive framework of reconstructing 3D building 
models from airborne LiDAR data, which involves building extraction, roof segmentation and 
model generation. Firstly, building points are extracted from LiDAR point clouds by removing 
walls, trees, ground and noises. Walls and trees are identified by the normal and multi-return 
features respectively and then ground and noise are detected by the region growing algorithm 
which aims at extracting smooth surfaces. Then the connected component analysis is 
performed to extract building points. Secondly, once the building points are acquired, building 
roofs are separated by the region growing algorithm which employs the normal vector and 
curvature of points to detect planar clusters. Finally, by combining regular building outlines 
obtained from building points and roof intersections acquired from the roof segmentation 
results, 3D building models with high accuracy are derived. Experimental results demonstrate 
that the proposed method is able to correctly obtain building points and reconstruct 3D 
building models with high accuracy.  

1.  Introduction  
Three dimensional (3D) building models have a wide range of applications such as urban planning, 
virtual city tourism and emergency decision. However, reconstruction of building model in large urban 
area is still a challenge task by traditional ways, e.g. photogrammetry. Due to its high precision and 
fast acquisition time, airborne LiDAR (Light Detection And Ranging) system has become an 
important data source for 3D building model reconstruction[1]. The generation of 3D building models 
from airborne LiDAR data mainly involves three key steps, i.e. building detection, roof segmentation 
and model generation. Various methods which focus on individual aspect have been proposed. For 
example, [2-5] present building extraction methods by utilizing image classification techniques, e.g. 
object-based classification. [6-9] describe building roof segmentation methods by several common 
used segmentation method, e.g. RANSAC, Hough transform and fuzzy c-means. [10-12] present the 
building boundary extraction and outlines regularization methods which are of high significance in 
model generation. 
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This paper proposes a comprehensive framework of reconstructing 3D building models from 
airborne LiDAR data. In order to extract building points, we utilize reliable features to remove 
corresponding non-building objects. For example, apparent wall and tree points are detected and 
removed by the normal and multi-return feature respectively. Then the ground points are identified by 
the region growing algorithm by detecting huge smooth surfaces. After building points are extracted, 
building roofs are segmented by a region growing algorithm which aims at extracting planar objects. 
Meanwhile, regular building boundaries are obtained by adjusting long segments extracted by the 
RANSAC algorithm. At last, 3D building models are acquired by combining the regularized 
boundaries and the roof intersections estimated from the roof segmentation results.  

2.  Building extraction 
The building extraction task involves separating buildings from ground, trees, and other objects 

(e.g. cars, lamps etc.). This paper extract building points by removing non-building points step by step. 
Firstly, apparent tree and wall points are removed. Secondly the region growing algorithm is employed 
to detect ground points. Finally, the connective component analysis is used to separate buildings from 
remaining trees.  

2.1.  Removing apparent trees and walls 
In terms of the building detection task, non-building points, including trees and walls, are viewed as 
noises. These points usually locate near the building points and thus affect the computation of their 
features as feature calculation of points is usually performed within their neighborhood. Therefore, 
these points should be firstly removed before computing features which are used in drectly detecting 
building points. The normal vector and the multi-return feature are utilized to remove these apparent 
noises. 

The normal of a point on the surface is estimated as the normal of a plane tangent to the surface. 
Therefore, the normal of a point can be derived by performing PCA (Principal Component Analysis) 
on the covariance matrix determined by the neighbors of this point. For each point, the covariance 
matrix C  is defined as: 
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where k  denotes the number of neighbors of the point, ip  refers to the i-th neighbor and p is the 
centroid of all the neighbors. The normal of a point is defined as the eigenvector corresponding to the 
minimum eigenvalue. If the point and its neighbors are on a plane, its normal is parallel to the normal 
of the plane. 

In the real world, normals of building roofs are impossible to be perpendicular to the z-axis with 
the orientation ze (0,0,1) while normals of wall points are usually orthogonal to the z-axis. Therefore, 
apparent wall points can be detected by comparing their normals with ze .  

After removing wall points, apparent tree points are identified by the multi-return feature. As the 
laser beam is able to penetrate trees, tree points contain many multi-return points. Meanwhile, 
buildings and grounds usually have only one return. Therefore, it can be concluded that points 
demonstrating high multi-return features are very likely to be tree points rather than building points. 
There are various ways of computing multi-return features and they have a high correlation with each 
other. In this paper, the multi-return feature mrf  is estimated as: 
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where ip  denotes a point with the i-th return number, N  is the neighborhood of a point. The 
numerator counts the number of points whose return number is larger than 1 while the denominator 
refers to the total number of points. For most building and ground points, mrf  is nearly zero as fewer 
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multi-return points exist.  On the contrary, tree points usually have high values of mrf  as there are 
many points whose return number is superior to 1 because of the penetration of the laser beam. In 
short, the multi-feature mrf  is able to detect apparent tree points. 

2.2.  Removing ground points 
After removing apparent noises, the region growing algorithm based on geometric features is utilized 
to identify ground points. In the point clouds collected by airborne LiDAR system, ground surface is 
usually smooth and huge with the largest connected area. Thus the region growing algorithm aims to 
detect smooth surface is employed to separate ground points. Since points on the same smooth surface 
usually have similar normals, the region growing algorithm employs the normal to find smooth 
surfaces. 

This region growing algorithm can also detect isolated outliers. Due to flying objects (e.g., birds 
and aircrafts) and LiDAR system errors, there are high and low outliers in the point clouds. For the 
isolated high or low outliers, they are usually grouped into clusters with fewer points. Thus by 
eliminating clusters with a small number of points, these outliers are removed. In addition, some tree 
points which do not form smooth surfaces are also identified as outliers.  

2.3.  Building points detection 
After removing apparent walls and trees and ground, the remaining points mainly contain buildings 
and trees. As buildings and trees are usually located separately, the connected component analysis is 
carried out to classify these points into separate groups in Euclidean space. Then geometric features, 
i.e. the area, the ratio of width to height, the average point density, are calculated to removing trees. At 
last building points are identified by the ratio of points whose curvatures are of high values. 

The curvature of a point is estimated as a relationship between the eigenvalues of the covariance 
matrix C , as: 

                  ( )0 0 1 2/σ λ λ λ λ= + +                                                                 (3) 

where ( )0 1 2 0 1 2, ,λ λ λ λ λ λ< < denote the eigenvalues of the covariance matrix C . If the point and its 
neighboring points belong to a planar roof, σ is nearly zero as the minimum eigenvalue is nearly zero. 
Otherwise, if a point lies on a tree, σ  is larger than zero. Since building points contain a sufficient 
number of points with lower values of σ , by comparing the ratio of points with higher values of σ , 
building points can be separated from tree points . 

3.  Roof segmentation 
In order to separate building roofs, the region growing algorithm utilizing the normal and curvature is 
performed for each building. Since the planar clusters are preferred rather than smooth surfaces, 
smaller normal threshold is used and seed points with lower curvature are preferred.  

In order to correctly separate roof neighbourings, non-planar points whose curvatures are larger 
than a threshold are firstly identified and removed before the following region growing clustering. The 
roof neighboring points and outliers (shown in figure 1(b)) belong to non-planar points as their 
neighborhoods contains either points from several planar roofs or fewer points. On the contrary, points 
around the center of roofs are planar points because their neighboring points belong to the same plane 
and thus their curvatures are very small. Apart from owning higher curvatures, non-planar points also 
have different values of normal compared with their corresponding plane as their neighborhood 
includes points from other planar roofs. Therefore, in order to correctly classify these points, non-
planar points shoubl be removed before performing the region growing algorithm. 
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(a) (b) (c) (d) 

Figure 1. Roof segmentation 
 
After the non-planar points are removed, the region growing algorithm is carried out to find planar 

clusters. Smaller normal threshold is imposed to make sure that planar clusters of high quality are 
obtained. As points with higher curvatures are already removed, the remaining points have lower 
curvatures and correct normal and thus can be correctly classified by the region growing algorithm as 
shown in figure 1(c). 

After the region growing algorithm, non-planar points with higher curvatures are then assigned to 
the corresponding planar clusters. The distance of the point to the plane and the minimal distance 
between the point and points of the plane are both taken into consideration to ensure that the point is 
assigned to the correct plane. At last, building roofs are correctly separated as displayed in figure 1(d). 

4.  Model generation 
3D building models acquired from airborne LiDAR data are composed of minimum segments which 
include building outlines and roof intersections. Thus the model generation process involves obtaining 
regular building outlines from building points and estimating the roof intersection segments based on 
the roof segmentation results. By combining those elements, 3D building models are derived. 

Due to the shortage of laser scanner in capturing linear features, obtained building boundary points 
usually display as zigzag [13]. In order to obtain geometrically correct building models, the boundary 
regularization, including boundary points detection, segments extraction and segments adjustment, is 
performed. Firstly, the building boundary points are extracted by the 2D alpha shape algorithm which 
is able to correctly extract boundary points of both convex and concave shapes of buildings. Secondly, 
the RANSAC algorithm [14] combined with the connected component analysis is performed to extract 
long segments. At last by adopting the adjustment suggested in [12] to adjust those segments, regular 
and geometrically correct building outlines are obtained.  

Meanwhile, the roof intersections are estimated by intersecting the separated planar roofs. By 
combining the regularized outlines and roof intersection segments, key vertices and intersection 
segments are determined and the final 3D building models are acquired. 

5.  Experiments and results 
In this paper, the Vaihingen dataset provided by the German Association of Photogrammetry and 
Remote Sensing (DGPF) [15] is employed to provide both quantitative and qualitative evaluation of 
our method. The DGPF data set is acquired on 21 August 2008 by Leica Geosystems using a Leica 
ALS50 system with 45° field of view and a mean flying height above ground of 500m. The mean 
point density is 4 points/ 2m . The dataset of Area 2 which is a characterized by a few high-rising 
residential buildings that are surrounded by trees is utilized in this paper.  

Figure 2 shows the classification results of building extraction. As shown in figure 2(b), wall points 
(in yellow) are correctly detected. Even though some non-wall points (e.g. tree points) are also 
extracted, this false classification does not affect the extraction of buildings and thus can be neglected. 
After wall points are removed, as shown in figure 2(c), apparent tree points (in green) are extracted 
according to the multi-return feature. Then the region growing algorithm is carried out to extract 
smooth surfaces and the cluster with the largest area is classified as ground (brown points in figure 
2(c)). Meanwhile, clusters with fewer points are labelled as noises which are red points in figure 2(c). 
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At last, building points (figure 2(d)) are extracted by utilizing the connected component analysis as 
well as the ratio of points with high values of curvature. 

 

 
(a) 

 
(b) 

 
(c) 

 
(d) 

Figure 2. Flow chart of building extraction. 
 
To evaluate the accuracy of the roof segmentation results (figure 3(a)) and the final building 

models (figure 3(b)), the mean and standard deviation of the distance of the points to their 
corresponding planes are computed. The mean value is 0.022 m while the standard deviation is 0.001 
m, which indicates that points belonging to a cluster are nearly within a plane. Lower values of mean 
and standard deviation also prove that the roof segmentation method is able to obtain planar clusters 
with high quality and accuracy. Since building models are reconstructed based on these segmentation 
results, it can be concluded that the final building models also display high accuracy of in terms of the 
distance of points to the models.  

 

 
(a) Roof segmentation resutls, each 
planar roof is rendered in a random 

color. 

 

 
(b) Final 3D building models, the 

building models are rendered in white 
while the ground surface brwon. 

Figure 3. Roof Segmentation results and building modelling results. 

6.  Conclusions and future work 
This paper presents a framework of obtaining 3D building model from airborne LiDAR data. This 
framework is totally automatic while having less reliance on parameter tuning. In addition, 
experimental results demonstrate that the building detection method is able to effectively remove non-
building points and thus detect building points correctly. Moreover, the roof segmentation results 
obtain high quality and accuracy of planar clusters, which ensures the accuracy of the final building 
models. In future work, we will apply this framework to other dataset in order to improve its 
applicability. 
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