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Abstract. Rainfall, one of the important elements of the hydrologic cycle, is also the most 

difficult to model. Thus, accurate rainfall estimation is necessary especially in localized 

catchment areas where variability of rainfall is extremely high. Moreover, early warning of 

severe rainfall through timely and accurate estimation and forecasting could help prevent 

disasters from flooding. This paper presents the development of two rainfall estimation models 

that utilize a NARX-based neural network architecture namely: REIINN 1 and REIINN 2. 

These REIINN models, or Rainfall Estimation by Information Integration using Neural 

Networks, were trained using MTSAT cloud-top temperature (CTT) images and rainfall rates 

from the combined rain gauge and TMPA 3B40RT datasets. Model performance was assessed 

using two metrics – root mean square error (RMSE) and correlation coefficient (R). REIINN 1 

yielded an RMSE of 8.1423 mm/3h and an overall R of 0.74652 while REIINN 2 yielded an 

RMSE of 5.2303 and an overall R of 0.90373. The results, especially that of REIINN 2, are 

very promising for satellite-based rainfall estimation in a catchment scale. It is believed that 

model performance and accuracy will greatly improve with a denser and more spatially 

distributed in-situ rainfall measurements to calibrate the model with. The models proved the 

viability of using remote sensing images, with their good spatial coverage, near real time 

availability, and relatively inexpensive to acquire, as an alternative source for rainfall 

estimation to complement existing ground-based measurements. 

1. Introduction 

Among the elements of the hydrologic cycle, rainfall is the most difficult to model due to the 

dynamics of the atmospheric processes that generate it and its variation over wide range of scales both 

spatially and temporally [1]. With the palpable warming of the climate system [2] now evident from 

observations of increases in global average air and ocean temperatures, the widespread melting of 

snow and ice, and rising global average sea level, more aberrations in the hydrological cycle such as 

increased area-average mean rainfall are anticipated particularly in tropical Asia [3]. A more accurate 

rainfall estimation is necessary especially in localized catchment areas where variability of rainfall is 

extremely high [4] in order to be forewarned of severe rainfall and help prevent disasters due to 

flooding.  
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Several studies have pointed out the vulnerability of the Philippines to disasters that could come 

with climate change [5], [6]. Recent flood events that accompanied tropical cyclone Megi in October 

2010, tropical cyclone Nesat in September 2011, and tropical cyclone Nalgae which came 

immediately after Nesat are ominous. All these instances were preceded by extreme rainfall, and 

underscored the need for more accurate rainfall estimates. 

Rainfall is measured from different sources such as rain gauge networks, ground-based radar 

systems, and remotely-sensed satellite images. Although conventional rain gauge networks and radar 

systems provide precise amounts of rainfall, they are sparsely located and provide only point-scale 

data that become inaccurate when extrapolated over a wide area [7]. Moreover, radar infrastructures 

are costly and their coverage is limited by topography. These limitations of in-situ rainfall 

observations over wide remote regions in the Philippine countryside make satellite images a promising 

source of rainfall information. 

Several rainfall estimation algorithms that utilize satellite images have been developed to provide 

estimates over a wide area, such as the Tropical Rainfall Measuring Mission (TRMM) [8] and the 

Precipitation Estimation from Remotely Sensed Information using Artificial Neural Networks 

(PERSIANN) [7]. However, these algorithms give global estimates that do not characterize the 

variability of Philippine rainfall. Locally dependent algorithms are necessary for locally focused 

applications. This paper presents a framework to estimate rainfall in a large watershed by using remote 

sensing, geospatial analysis tools in a geographic information system, and artificial neural networks. 

 

2. The case study area 

The Cagayan River Basin, with a huge catchment area of about 27,300 km
2
, is located in the north-

eastern part of the island of Luzon in the Philippines. Its main drainage channel is the Cagayan River, 

the longest and largest river in the country. Being at the foot of two mountain ranges, the Sierra Madre 

Mountain and the Cordillera Mountain Range, the Cagayan river basin is replete with resources. It 

drains a fertile valley that produces a variety of crops such as rice, corn, banana, coconut, citrus and 

tobacco. It is regarded as the Philippines’ “Food Basket and Gateway to the North”. 

Using the Modified Coronas Classification scheme, the western portion of the Cagayan River Basin 

is characterized by short dry season during the periods from December to February or from March to 

May and not having a pronounced maximum rain period. Small portions on the eastern side have no 

dry season and a very pronounced maximum rain period from December to February. Minimum 

rainfall occurs during the period from March to May. 

 

3. Materials and Methodology 

3.1. Conceptual framework 

Figure 2 shows the conceptual framework followed in the development of the REINN model-- 

Rainfall Estimation by Information Integration using Neural Networks. It combines indirect methods 

of rainfall estimation, i.e. using infrared satellite imageries, and the more direct techniques, i.e. using 

passive microwave estimates of rainfall rates, calibrated with ground-based measurements using 

machine learning. Using current datasets, the model can estimate the amount of current rainfall. 

3.2. Satellite images and in-situ datasets 

Freely available satellite images and datasets of different spatial and temporal resolutions as well as 

in-situ rainfall data were utilized in the early stage of REINN model development. The MTSAT 

images are hourly gridded datasets of four infrared (IR) channels. Gridded datasets are latitude and 

longitude oriented meaning they were already geometrically corrected based on the satellite’s position 

information [9]. 

The 3B40RT data product of TMPA was also used. 3B40RT is a 3-hourly global 0.25° x 0.25° 

area-averaged combined microwave precipitation estimate. The rainfall rate value for each grid box is 

a pixel-weighted average from a combination of all available estimates from the Microwave Imager on 
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TRMM, Special Sensor Microwave Imager on DMSP, Advanced Microwave Scanning Radiometer 

(AMSR-E) on Earth Observing System (EOS) Aqua and Advanced Microwave Sounding Unit-B 

(AMSU-B) on the NOAA satellite series over the 3-hour period centered at synoptic times 00Z, 

03Z, …, 21Z [10], [11]. 

Hourly rainfall measurements from only eleven rainfall stations are available for the whole 2.7 

million hectares of Cagayan River Basin. They were obtained from the Philippine Atmospheric, 

Geophysical and Astronomical Services Administration (PAGASA) and the National Irrigation 

Administration (NIA). 

 

Figure 1. The Cagayan river basin. 

 

 

Figure 2. The REIINN conceptual framework. 

 

3.3. REIINN framework implementation 
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Figure 3 shows the overall process flow diagram for the implementation of the REIINN rainfall 

estimation framework. Remotely-sensed satellite images of MTSAT were obtained as well as the 

corresponding TMPA 3B40RT rainfall rates and in-situ rainfall measurements for October 2009. The 

raw hourly MTSAT infrared images were pre-processed to obtain hourly brightness temperature (TB) 

images. The hourly brightness temperature images were then temporally aggregated to 3-hourly 

intervals to correspond to the TMPA resolution. A developed rain/no rain classification scheme was 

used to derive the 3-hourly cloud-top temperature (CTT) images. The TMPA 3B40RT microwave 

rainfall rates were pre-processed and calibrated with in-situ rain gauge measurements to obtain surface 

rainfall rates. 

 

 

Figure 3. REIINN framework implementation. 

 

Results of the image and data preprocessing described above were used to train the designed Non-

linear Autoregressive Exogenous Model (NARX) based neural network architecture. The resulting 

NARX based neural network model (we call REIINN Model) defines the relationship between cloud-

top temperatures and surface rainfall rates. 

3.4. Designing and training the REIINN model – NARX-based neural network architecture 

From the REIINN conceptual framework presented in Section 3.1, this research is trying to determine 

the nonlinear, dynamic relationship that exists between MTSAT IR CTT image values and the 

combined rain gauge–TMPA rainfall rates. Once determined, the derived function can then be used to 

estimate rainfall rates from current IR CTT images. Neural networks are known to be sophisticated 

modeling techniques capable of modeling extremely complex functions where statistical models are 

not anymore valid, especially in areas of function fitting and time series analysis [12]. It provides a 

computationally efficient way of determining an empirical, nonlinear relationship between a number 

of ‘‘inputs’’ and one or more ‘‘outputs’’ [13], [14]. 

The conceptualized REIINN model, written in mathematical form, is shown in equation (1): 

 

RRestimated (t) = f (MTSATCTT (t),RRestimated (t -1),RRactual (t -1))
                       (1) 

 

where, RRestimated (t)  is the rainfall rate of interest at the current time instant t which is a function of: 

MTSATCTT (t) – the MTSAT CTT image at time instant t, RRestimated (t – 1) – the model output rainfall 

rates at the previous time instant and RRactual (t – 1) – the actual rainfall rate at the previous time 

instant. With this kind of model, the NARX recurrent neural network is the most appropriate type of 

neural network to approximate the function f. 

The NARX, or the Nonlinear Autoregressive with Exogenous Inputs, neural network is a recurrent 

dynamic network based on the Nonlinear Autoregressive Exogenous model. This means that the 

model predicts the current value of a time series based on its relation to the past values of the series 

and current and past values of the exogenous series [15]. 
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Two NARX-based neural network models were developed i.e. REIINN 1 and REIINN 2. REIINN 

1 has a parallel architecture, wherein, at a specific instant, it takes as input the CTT of the four IR 

channels of MTSAT and its estimated rainfall rate that is fed back from the previous time instant as 

shown in Figure 4. On the other hand, REIINN 2, shown in Figure 5, has a series-parallel architecture 

that takes in the same CTT images, but with the inclusion of the actual rainfall rate measurements 

from the previous instant. The recurrent nature of the two models allows them to account for the 

temporal dynamics that exist in rainfall patterns. 

Typically, neural networks are trained so that a particular input leads to a specific output. A 

network is ‘‘trained’’ to a specific task by presenting it with many examples of inputs and the 

corresponding desired outputs (targets). The resulting 3-hourly MTSAT CTT images (with 4 infrared 

channels each) and 3-hourly combined rain gauge-TMPA rainfall rates, after pre-processing, were 

used as input and target training data respectively. A total of 168 instances (168 3-hourly MTSAT 

CTT–rainfall rates pairs) corresponding to the whole month of October 2009 were used. 

 

Figure 4. Schematic diagram of the REIINN 1 model. 

 

 

Figure 5. Schematic diagram of the REIINN 2 model. 

 

 

4. Results and Discussion 

Model performance of REIINN 1 and REIINN 2 were assessed using two metrics, i.e. Root-Mean-

Square Error (RMSE) and correlation coefficient R. 

4.1. REIINN 1 model performance 

REIINN 1 yielded an RMSE of 8.1423 mm/3h and an overall R of 0.74652. Figure 6 shows the 

regression plot for REIINN 1, which displays the network output with respect to the target. The closer 
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the value of R to 1, the better is the fit of the network. Here, it can be seen that the network 

underestimates higher rainfall rate amounts while overestimates lower rainfall rates. Also, non-rainy 

samples are mapped as rainy. 

Figure 7 shows the REIINN 1 network’s time-series response. Here, the underestimation and 

overestimation can be clearly seen as represented by the positive and negative vertical error lines, 

respectively. This shows that the network attenuates (either positively or negatively) peak rainfall 

values. This may be due to the nature of the NARX model, where current estimates of rainfall are 

dependent on previous values. This dependence on previous values makes current estimates fall not far 

from the values of previous estimates thus the attenuation effect. 

 

 
 

Figure 6. REIINN 1 regression plot. Figure 8. REIINN 2 regression plot. 

 

 
Figure 7. REIINN 1 time-series plot. 

4.2. REIINN 2 model performance 
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REIINN 2 yielded an RMSE of 5.2303 mm/3h and an overall R of 0.90373 which are significantly 

better than REIINN 1. Figures 8 and 9 show the regression and time-series response plots for REIINN 

2 respectively. Generally, REIINN 2 performed better than REIINN 1. This can be explained by the 

inclusion of actual rainfall rate measurements from the previous time instant as input to the model. 

 

 

 

Figure 9. REIINN 2 time-series plot. 

 

5. Conclusion and Recommendations 

The superior model performance presented by REIINN 2 over REIINN 1 showed that including actual 

in-situ rain gauge measurements taken from the previous time instant as input to the current estimation 

is better than feeding back the previous outputs (rainfall estimates) of the model. REIINN 2 allows a 

continuous re-calibration of the model with actual values of rainfall and as such, portrays the process 

dynamics. Moreover, it demonstrates that, although remote sensing images provide spatially 

distributed information on rainfall, rain gauges which are direct measurement of rainfall should not be 

eliminated from the model. 

The results, especially that of REIINN 2, are very promising for satellite-based rainfall estimation 

in a catchment scale. It is believed that model performance and accuracy will greatly improve with a 

denser and more spatially distributed rain gauge measurements to calibrate the model with. The two 

models proved the viability of using remote sensing images, with their good spatial coverage, near real 

time availability, and relatively inexpensive to acquire, as an alternative source for rainfall estimation 

to complement existing ground-based measurements. 
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