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Abstract. The present study examines the Sea Surface Temperature (SST) variations over the
South China Sea (SCS) using the National Oceanic and Atmospheric Administration (NOAA)
SST daily datasets for the period 1988-2009. In the SST over the South China Sea (SCS), a
north-west versus south-east SST gradient (hereafter gra-SCS SST) is revealed. This SST
gradient is seen to be induced by the distinct wind anomaly along with fresh water flux changes.
The slope difference between the gra-SCS SST before and after 1999 is observed to be
statistically significantly different than zero at a 95% confidence level. A decreasing/increasing
trend in the gra-SCS SST is revealed before/after 1999. Besides, it is found that the gra-SCS SST
characterizes the Asian monsoon variability by inducing cross equatorial monsoon flow towards
the Asian Continent. In addition, we established the role of the gra-SCS SST in the Asian
monsoon by computing causation based on the information flow concept between the gra-SCS
SST and traditional monsoon indices, which pronounces that former impact the later. Based on
the present corollary, we suggest that the gra-SCS SST should be considered as an important
parameter in the climate studies as it is meticulously related to the precipitation over Asia.

Keywords : SST, South China Sea, monsoon, precipitation.

1. Introduction

The South China Sea (SCS) is one of the largest semi-enclosed marginal seas in the world ocean but the
SCS remains poorly observed in terms of climate variability. It is connected with the East China Sea to
the northeast, the Pacific Ocean and the Sulu Sea to the east, and the Java Sea and the Indian Ocean to
the southwest. It is a very important region of interest for the scientific community because 1) the onset
of the SCS summer monsoon (SM) indicates the onset of the East Asian SM [1], 2) Indian and East
Asian monsoon systems exchange heat, momentum and moisture with the sea over the SCS [2], 3) the
changes in Sea Surface Temperature (SST) over the SCS because of these fluxes during the monsoon
affect chlorophyll concentration and therefore affects half billion people live along the coast of the SCS
with its fisheries and other important resources [3], and 4) the anomalous state of the SCS can affect
East and Southeast Asian climate [4] [5] [6] [7] hence have a profound influence on the social and
economic condition of over 60% of the earth’s population.

Moreover, the origin, development, and evolution of the SCS processes can greatly influence the
weather and climate in East and Southeast Asia [8] [9], so it always necessary to comprehend the SST
variability over the SCS. The SST over the SCS is considered as an important parameter in many
operational and research activities, ranging from weather forecasting to climate research and plays a
crucial role in maintaining the monsoon precipitation over the SCS and the surrounding area [7] [10].
Thus investigating the SST variability over the SCS region can help to figure out the influences of SCS
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SST on rainfall. Moreover, it’s worth to study SST s it is an important surface boundary conditions
which are decisively important for the establishment of the monsoon circulation and rainfall [11] by
modifying surface heat fluxes and the deep convection in the tropical atmosphere [12] [13] [14]. For
example, in the recent study [14], the explicit prominence of SST (over the Bay of Bengal) in facilitates
deep convection was remarkably identified. Besides, SST is considered to be the most important
representative quantity of the ocean, which communicates the ocean’s relatively large thermal inertia to
the atmosphere, through an exchange of the surface fluxes [15] and indeed plays an important
component in the precipitation variability. Therefore, in the view of the importance of the SST in the
monsoon and because of the peculiar location of SCS where the most intense atmospheric convection
associated with East Asia occurs, it is desirable to study the climate variability of SST over the SCS.
The climate variability has become an important topic of scientific pursuit during the past few decades,
intimately linking the economy of a nation with its climate-resources [16] [6] [17]. For example, [16]
found that SST gradients across the equatorial Pacific undergo a regime change in 1998/99 due to a
significant cooling (warming) over tropical eastern (western) Pacific in the later period. Recall that, SCS
SST is largely influenced by one of the largest source of Earth’s climate variability commonly known
by El Nino—Southern Oscillation [18] [3] [19]. We intended to comprehend the climate variability of
SST over the SCS and its association with Asian precipitation. To best of our knowledge, none of the
previous studies so far brought out the SST gradient over the SCS, its associated oblivious trends and
its association to Asian monsoon. In the following, first, list the data source and methodology, and then
give a brief presentation of the results. This study is summarized in section 4.

2. Data and Methodology
The National Oceanic and Atmospheric Administration (NOAA) SST product from 1988 to 2009
(hereafter NOAA SST) based on the Advanced Very High-Resolution Radiometer (AVHRR) infrared
observations merged with the Advanced Microwave Scanning Radiometer-Earth Observing System
(AMSR E) is used (please refer to [20] [21] for more details) in the present study. Besides, National
Center for Environmental Prediction (NCEP) - DOE AMIP 2 reanalysis daily datasets for wind fields
[22], which are provided by the NOAA/OAR/ESRL PSD, Boulder, Colorado, USA, and are available
from their website at http://www.esrl.noaa.gov/psd/ is also used for dynamical explanation. The
precipitation data is taken from Asian Precipitation - Highly-Resolved Observational Data Integration
Towards Evaluation (APHRODITE's) of Water Resources [23]. Surface salt flux observations are
obtained from the Global Ocean Data Assimilation System (GODAS) developed at NCEP [24].
Notably, to obtain statistical significance, we followed two-tailed student t-test.

In methodologies, we will be using the traditional ones (e.g., regression analysis) and a newly
developed tool for identifying the causality between time series. The causality from X5 to X (units: nats
per unit time) is:

T2_>1 _ C11C12C2,d1 _C122C1,d1
C121C22 _C11C122

, (M

where Cj; is the sample covariance between X; and X; (i,j=1,2), and C;4j the covariance between X; and
[Xi(t+kAt) - Xj(t)] / (kAt), with At being the time step size and k> 1 some integer. Ideally, when T»—,; is
nonzero, then X5 is causal to X, and vice versa (please refer [25] [26] for more details for computing
causation).

Besides, to understand the underlying oceanography. we also computed the wind-driven vertical
velocity at the bottom of Ekman layer using stress according to [27] and formulae is given below.
The vertical velocity at the bottom of the Ekman layer:

We = (1/pf) (curl.t+pt./f) (2
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here the Coriolis parameter f is equal to 2Q sin @, where ¢ is the latitude, (2 is the rotation rate of Earth
(7.29x107 rad s"), and P, the rate of change of the Carioles parameter with latitude, is equal to 2Q cos
@/R, with R equal to the radius of Earth (6.37x10° m). curl. t, the vertical component of wind stress
curl, is defined by,

curl;t = 0t,/Ox - Ot/0y 3)

Wind stress and its components (1 , T . and T, ) were computed using the bulk aerodynamic formulae.
The meridional Ekman transport per unit zonal width computed as,

-/pf 4)

3. Results

The SST changes over SCS for the period 1988-1998 (PRE99) and 1999-2009 (POST99) is analyzed
using the NOAA SST daily data sets. It is known that SCS SST is largely influenced by one of the
largest sources of Earth’s climate variability commonly known by El Nifio—Southern Oscillation [1] [3]
[19]. And since after the late 1990's, significant changes were seen over the Pacific Ocean due to the
anomalous wind divergence in the central Pacific that cause a shift in the anomalous atmospheric
convection westward, leading to a westward shift of the anomalous westerly response, thereby
preventing the eastward propagation of the SST anomaly after the late 1990s [28]. For example, [28]
and [16] found that the first leading empirical orthogonal function (EOF) mode of the POST99 tropical
Pacific SSTA has shown maximum warming is the central Pacific (around 150°W), whereas the PRE99
EOF1 mode shows a warming in the eastern Pacific. So, therefore, it is of great scientific interest to
comprehend the SST changes over the SCS during these two different periods; PRE99 and POST99.
Analysis of the NOAA SST data reveals that mean SST during June, July, August, and September
(hereafter JJAS) of PRE99 and POST99 is above 27°C (Figure la and 1b), which is conducive for
enhanced convective precipitation [29] and is therefore of paramount importance.

Figure 1c represents JJAS SST differences, POST99 minus PRE99 which vividly shows that there
exist substantial differences in the variability of SST during JJAS of PRE99 and POST99. It is found
that these SST differences within the marked rectangular boxes in Figure 1(b) are statistically distinct
from zero at a 99% level from that in 1(a). The shaded region in Figure 1d shows the statistical
significant region. The substantial difference in SST is observed in the period PRE99 and POST99,
particularly over regions 106°E; 115°E, 17°N; 22°N (hereafter region I) and 117°E; 120°E, 12°N; 17°N
(hereafter region II) with the statistical significance of 99%. Interestingly, in the SST over SCS, a
gradient in the SST with one center over north-west and another over south-east is found (Figure 1). To
comprehend the SST gradient, the SST over region II is subtracted from that over region I, and we
referred to it as gra-SCS SST.

The time series (solid line) and linear trends (dash line) of the gra-SCS JJAS SST from 1988 to 2009
are plotted in Figure 2. Clearly, we see that during POST99 the gra-SCS SST is significantly increased
in comparison to PRE99. As seen from Figure 2, the gra-SCS SST has experienced a change in the
pattern since PRE99. It is found that before 1999, the gra-SCS SST has a decreasing trend and whereas
after 1999 the gra-SCS SST shows an increasing trend. Further, it is to be noted that the two slopes
(gra-SCS SST for PRE99 and POST99) do not overlap and indeed observed to be statistical significance
at a 95% confidence level. Essentially, we find that, at a 95% confidence level, the two slopes are -3.64
+ 1.03 and 0.63 + 1.00 (both are multiplied by 10E-4) respectively and they lie within a confidence
interval of [-4.65, -2.61] and [-0.37, 1.63]. And these do not overlap because it is clearly evident from
the interval that during PRE99 the interval is ending at -2.61 and while during the POST99 interval is
starting from -0.37, thus we can say that the two slopes indeed completely differ at a 95% confidence
level. The least squares method applied to estimate the slope is already being used in our recent study
[14]. This distinguishes the role of the gra-SCS SST during the two different climate phases PRE99 and
POST99.
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Figure 1. Average JJAS SST gra-SCS (in °C) (a) PRE99 (b) POST99 (c) POST99 minus PRE99 and (d)
represent (b) is statistically distinct from zero at a 99% level from that in (a).

gra—SCS SST (JJAS) time series (solid line) and trend (dashed line)
PRE99 POST99
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Figure 2. gra-SCS SST (JJAS) time series (solid line) and trend (dashed line). The trend plotted is
statistically significant at 99% confidence level.

In the next, the possible dynamical reason behind the gra-SCS SST change during the study period
is explored. It is identified that the gra-SCS SST variation during the POST99 seems to be associated
with the distinctive wind patterns (Figure 3a). The distinctive wind pattern is clearly seen over the gra-
SCS SST region. The decreased/increased wind speed (Figure 3a) along with the presence of high/low
freshwater influx (Figure 3b) is observed during POST99. And, this seems to be the cause of SST
increase/decrease during POST99 over the region I/region II respectively. Because it is well known that
the presence freshwater in flux and low-intensity winds can break down the stable stratification that
forms due to the flux and results in leaving the ocean warmer than most of the other parts of the Ocean,
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this is indeed natural and known fact [30]. Apart from this, an attempt has also been made to understand
the underlying oceanography and hence vertical velocity at the bottom of Ekman layer and meridional
Ekman transport per unit zonal width along 17°N during POST99 minus PRE99 also been computed
(Figure 3¢ and Figure 3d). A clear contribution of Ekman transport to coastal upwelling is depicted from
the analysis. It reveals that another possible reason to the reduction of SST over the region II is the
coastal upwelling along with the maximum positive (or northward) Ekman transport (which can be seen
between 116°E and 122°E).
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(a) Surface Winds (1000mb) {(b) Surface Salt flux
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Figure 3. POST99 minus PRE99 differences during JJAS (a) surface (1000hpa level) wind
magnitude/vector difference represent by shaded/arrow (b) surface salt flux (in x10-g/cm”2/s) (¢) vertical
velocity at the bottom of Ekman layer (in x 10 m/s) (d) meridional Ekman transport per unit zonal width
along 17°N.
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Figure 4. Lead-lag correlation
between the gra-SCS SST and the
Ushear over the Ushear SCS
region; a positive number means
that the gra-SCS SST lags Ushear
over the Ushear SCS region (in
days). The correlation coefficient
is statistically significant at 99%
confidence level.

o
o
A

Causality in terms of information flow rate (nats/day)
)
Ushear over the Ushear_SCS region — gra-SCS SST  0.407

Corrclation

e e 9 9 9
[ S - RN

|
ES
=)
|
o
s}
|
N
s}
|
o

-10 0 10 15 20 30 40

Lead Time (in days) Lag

Moreover, in order to strengthen our claim, especially the role of wind fields in the gra-SCS SST,
the association of wind fields with gra-SCS SST is further explored by computing the lead-lad
correlation followed by examining the causation in a quantitative way (please refer [25] [26] for more
details for computing causation) between the gra-SCS SST and the U shear (U850-U200) over the SCS
region (105°;120°E, 5°-20°N; hereafter called as Ushear SCS region). It is to be noted that the Ushear
region chosen here is similar to Liang et al., (2002) and it is of crucial importance in terms of SCS, as it
characterizes the broad-scale feature of the SCS [31]. The results reveal a significantly high correlation
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between the Ushear SCS region and gra-SCS SST (Figure 4). Further correlation analysis reveals the
possible contribution of Ushear SCS (Ushear SCS seems to lead the gra-SCS SST) to gra-SCS SST.
To corroborate the findings, information flow rates from the Ushear SCS region to gra-SCS SST is
computed and it is found to be 0.407 nats/day at 95% significant level. This indeed says that there is
causation from Ushear SCS region to gra-SCS SST. Thus, in other words, we can say that the former
could be one of the causes for the latter and this is in accordance with aforementioned findings.
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(a) SD Precip. (b) SD Precip.
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Figure 5. (a) and (b) are the standard deviation of the precipitation, (c) and (d) are precipitation regressed
onto the gra-SCS SST for PRE99 (left panel) and POST99 (right panel). The regression coefficient is
statistically significant at 99% confidence level.

Seeing at the SCS SST potent and knowledge which states that Asian monsoon system (which
includes the South Asian monsoon and the East Asian monsoon) begins over the SCS [18], it is highly
recommended to talk over the relationship between the SCS SST gradient and precipitation over the
Asian region. Therefore, we analyzed the precipitation variability and its association with the SCS
gradient in SST (Figure 5). To do so, we regressed the precipitation onto the gra-SCS SST for PRE99
(Figure 5¢) and POST99 (Figure 5d) using the least square regression method. The regression equation
has the form Y=a+bX, where X and Y are two variables, b is the slope of the line, and a is the y-intercept.
In this case, X is the gra-SCS SST time series and Y the series of gridded precipitation values on a 1° x
1° latitude-longitude grid. Both the series have a time resolution of 1 day, and the regressed precipitation
is plotted in Figure 5c (during PRE99) and 5d (during POST99). Interestingly, the comparison between
Figure 5 (a and c¢) and Figure 5(b and d) shows that the precipitation variability over the vast region of
East and South Asia can be well explained by the gra-SCS SST. Besides, we also have drawn the
differences (POST99 minus PRE99) in standard deviation in precipitation and regressed values of

IOP Publishing
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precipitation in Figure 6. If we compare Figure 6a and Figure 6b, the similarity can be clearly evident.
In other words, the analysis reveals that gra-SCS SST bears a strong relationship with the precipitation
variability over Asia. Thus, we may say that gra-SCS SST must be considered as an important parameter
in the climate studies as it is closely related to precipitation over Asia.

POST99 minus PRES9
(a) SD Precip (b) Precip regressed onto gra—SCS SST
50N : 50N

10N : | 10N
P __.h 4 B b a i
80E 90E 100E110E120E130E 80E 90E 100E110E120E130E
-0.4-0.2 0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 -0.1-0.05 0 0.05 0.1 0.15 0.2 0.25 0.3 0.4

Figure 6. (a) alike Figure 5a but for POST99 minus PRE99 differences, and (b) alike Figure 5c but for
POST99 minus PRE99 differences.

Since it is evident, that wind shear is the deep-rooted component that drives the monsoon
precipitation over Asia [32] [33]. So to describe the gra-SCS SST association with precipitation over
Asia, the wind shear over the Asian region is examined. To investigate this, we regressed the wind shear
over the Asian region onto gra-SCS SST (Figure 7). It is clearly evident that gra-SCS SST induces a
cross-equatorial shear flow towards the Asian Continent in order to participate actively in the dynamics
of Asian monsoon (Figure 7c and 7f). Further, to make corroboration on the role of gra-SCS SST in the
Asian monsoon, we examine the causation (by applying aforementioned discussed rigorously causality
analysis) between the gra-SCS SST and traditional monsoon indices which are used to define Asian
monsoon in a quantitative way. The tradition monsoon indices on which causation has been applied are
Webster and Yang circulation index (hereafter USHEAR index) and Goswami monsoon Hadley
circulation index (hereafter VSHEAR index); please refer [32] and [33] respectively for more details
regarding tradition monsoon indices. The USHEAR index is defined as a time-mean zonal wind (U)
shear between 850 hPa and 200 hPa, written U850 — U200, averaged over South Asia from the equator
to 20°N and from 40° to 110°E (region is marked in Figure 7d) and the VSHEAR index is defined by
the meridional wind (V) shear between 850 hPa and 200 hPa (V850—V200) averaged over the region
70°; 110°E, 10°; 30°N (region is marked in Figure 7¢). We found a significant (at 95% level) causation
between 1) gra-SCS SST and USHEAR index and 2) gra-SCS SST and VSHEAR index. In case (1), the
flow rate is 0.242 nats/day. In case of (2), the flow rate is 0.144 nats/day. The significant causation
between the gra-SCS SST and the monsoon index (USHEAR and VSHEAR) is found, i.e., we can say
that the former could be one of the causes for the latter, which is indeed overwhelming because this
reveals the interaction of SCS SST with Asian monsoon quantitatively. Also drawn are the POST99
minus PRE99 differences of the regressed U shear, V shear and UV shear vectors (Figure 8).
Interestingly, an unambiguous role of the gra-SCS can be depicted in the differences as shown in Figure
8c. It shows a precise association between the gra-SCS and weakening of the cross-equatorial flow in
the recent decade. The weakening of cross-equatorial monsoon flow and its association to the Indian
Ocean is already been reported in the recent study [34]. Nevertheless, the exact cause of the weakening
of large-scale cross-equatorial monsoon flow is still an open debate for the scientific community. Based
on Figure 8 findings, we suggest that the gra-SCS is one of the reasons for the weakening of the large-
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scale cross-equatorial monsoon flow in the recent decade. However, we keep it as debatable until a
detailed study using an adequate model with the gra-SCS SST forcing data is done because we feel that
it would be necessary before a conclusive statement can be made. We leave this concern for future study.

PRES9 POSTI9
regressed onto gro-SCS SST

(a) U Shear regressed onto gra-SCS SST
40N

45]6;} U Sheor

m‘_—__—.—(ﬂ-"

Figure 7. (a) and (d) are U shear regressed onto gra-SCS SST, (b) and (e) are V shear regressed onto
gra-SCS SST, (c) and (f) are UV shear regressed onto gra-SCS SST for PRE99 (left panel) and POST99
(right panel). The regression coefficient is statistically significant at 99% confidence level.

POST98 minus PRE99 regression onto gra-SCS SST
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Figure 8. (a) alike Figure 7a but for POST99 minus PRE99 differences, (b) alike Figure 7b but for
POST99 minus PRE99 differences, and (c) alike Figure 7c¢ but for POST99 minus PRE99 differences.
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4. Summary

Our analysis with the daily mean NOAA SST data has shown the gra-SCS SST has distinctly different
climatic patterns before and after 1999, which is referred to as PRE99 and POST99 respectively. In the
SST over the SCS, a north-west versus south-east SST gradient is revealed. The gra-SCS SST is
identified to have decreasing slope before 1999 and increasing since 1999. This gra-SCS SST is seen to
induced by the distinct wind anomaly along with fresh water flux changes and underlying oceanic
processes. Interestingly, it is found that gra-SCS SST shares a strong relationship with precipitation over
Asia by inducing the cross-equatorial monsoon shear flow towards the Asian Continent. Further
corroboration made on the role of gra-SCS SST in the Asian monsoon by using established information
flow concept between gra-SCS SST and traditional monsoon indices. It reveals explicit causation
between gra-SCS SST to the monsoon indices. Thus with all due fairness, the present study proposed
that the gra-SCS SST must be considered as important in climate change signals in describing the
precipitation variability over Asia.
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