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Abstract. The layout design and structure design of rubber elastic tube clamp have a 
direct impact on the vibration and noise characteristics of pipeline system, as well as the 
fatigue life of tube clamp itself and related parts in pipeline system. It is a typical multi-
objective optimization design problem. How to design an elastic tube clamp that meets 
the requirements of stiffness, strength and fatigue life at the same time is an important 
issue in the design of marine pipeline system. In this paper, the structural optimization 
of rubber elastic tube clamps is studied by using the non-linear multi-objective topology 
optimization method. 

1.  Introduction 
Outboard tube clamp, as pipeline support device, should have certain stiffness to ensure that the 
displacement of pipeline is not too large; at the same time, it should be flexible to ensure that the pipeline 
will not be damaged by excessive stress when it is subjected to certain deformation; at the same time, it 
should ensure certain vibration isolation capacity, so that the excitation force transmitted to the hull is 
small and radiated noise is reduced [1]. Therefore, the design of tube clamp is a typical multi-objective 
optimization problem. In this paper, multi-objective topology optimization method is used to design the 
tube clamp. Because of the better mechanical properties of rubber material, rubber is used as elastic 
material in tube clamp, and multi-objective topology optimization technology based on finite element 
analysis is used to optimize the layout of rubber material in tube clamp. Because the current commercial 
software doesn’t provide multi-objective non-linear material topology optimization design method, the 
MATLAB program written by myself is done to complete the tube clamp topology optimization design 
[2]. Following is a brief introduction of its main technology and process. 

2.  Constitutive Model of Rubber Material 
The constitutive model of rubber material is the basis of finite element analysis of rubber structural parts. 
Firstly, various constitutive models of rubber materials are studied, and the constitutive parameters of 
rubber materials used in tube clamp are identified by experiments, which are used for finite element 
analysis of tube clamp. 

Rubber belongs to macromolecule super-elastic material. The so-called super-elasticity means that 
the material can produce great strain under the action of external force. When unloaded, the strain can 
be automatically restored [3]. That is to say, the deformation in the process is elastic deformation. At 
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present, in most commercial non-linear finite element analysis systems, a class of hyper-elastic 
incompressible material model has been established. The rubber hyper-elasticity model is based on the 
hypothesis of isotropy and isotherm characterized by a unified physical quantity, which is the strain 
specific energy function (U), which is a scalar function of strain or deformation tensor. 

( )U U B                                  (1) 
Where, B is Cauchy-Green deformation tensor. The derivative of the strain component is the 

corresponding stress component: 

, ij
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Where, T is the second-order Piola-Kirchhoff stress tensor and E is the Green-Lagrange strain 
tensor are used. Therefore, the Cauchy stress tensor can be expressed as: 
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det( )  H                                  (5) 
TB = HH                                   (6) 

Where , ix  represents the current coordinates and jX the reference coordinates. For isotropic 

hyper-elastic materials, the strain specific energy function can be expressed by three invariants I1, I2 
and I3 of Cauchy-Green strain tensor. 
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So far, the hyper-elastic constitutive model of rubber materials can be generally expressed as follows: 
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Where , I is the unit matrix. p is the Hydrostatic pressure introduced by the incompressibility of 
rubber. A review of constitutive models of rubber Hyper-elastic Materials is provided in reference [1]. 
The Ogden constitutive model used in this paper is discussed below. The expression of strain specific 
energy in Ogden model is as follows: 
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Where, N is the material parameter; i , i , iD   is the temperature-related material parameter. 

In the Ogden model, the initial shear modulus 0 and the initial bulk modulus 0K satisfy the following 

relationships:  
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Generally, the elastic modulus and Poisson's ratio of steels with different compositions do not differ 
greatly. However, rubber is very different from steel. The material properties of rubber with different 
compositions are quite different. Therefore, although the constitutive model of rubber material is 
discussed in detail in the previous section, the specific parameters of the model must be obtained through 
experiments. The common method is to prepare rubber material samples, and carry out uniaxial, biaxial, 
plane and volume tensile tests on the samples. After collecting the experimental data, the parameters of 
the constitutive model are obtained by parameter identification method. In this paper, Ogden model (N 
= 3) is used to calculate the model interpolation of the test data, and a good fitting accuracy is obtained 
(Table 1). 

Table 1. Identification of constitutive parameters of rubber materials 

 mu_i Alpha_i D_i 
1 0.372301454 1.54482338 9.897580391e-3 
2 6.56215274e-4 5.84632117 -1.285048945e-2 
3 1.703590401e-2 -1.83456548 4.778882726e-4 

3.  Nonlinear multi-objective structural topology optimization method for flexible rubber tube 
clamp 
Topology optimization is an important research direction of structural optimization. It aims to help 
designers find the best material layout to meet certain objectives and constraints in the initial stage of 
structural design (conceptual design stage). The results of topology design have a crucial impact on the 
final performance of the structure. The earliest discussion on topology optimization can be traced back 
to the truss theory proposed by Michell more than a hundred years ago. However, at that time, due to 
the limitations of structural analysis and optimization methods, the initial development of topology 
optimization theory was very limited. With the development of computer software and hardware and 
the maturity of structural finite element analysis and computer-aided optimization methods, topology 
optimization has developed vigorously since the end of 1980s. The most important milestone of 
topology optimization is the homogenization method proposed by Bendse and Kikuchi in 1988. This 
method relaxes the original problem into a continuous variable optimization problem by introducing a 
composite material model, which can be efficiently solved by Optimal Criteria (OC) and Mathematical 
Programming (MP). Density method is a variant of homogenization method. There are many specific 
forms at present, including SIMP method, RAMP method and so on. The common point of density 
method is that the elastic tensor of material is defined as a monotone function of material density, the 
original problem is relaxed as a continuous variable optimization problem, and the penalty term is 
introduced implicitly or explicitly to eliminate the intermediate density. 

3.1.  Finite Element Analysis Method of Rubber Flexible Tube Clamp 
Because the material nonlinearity and geometric nonlinearity of flexible rubber tube clamps are related 
to the history of loading and deformation. In structural analysis, the load is usually divided into several 

increments. Assuming the displacement t
iu and strain t

ij and the stress t
ij corresponding to the load 

and displacement conditions at the time t  have been found, that the following equations and boundary 
conditions should be satisfied when time transits to t t : 
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Where  is the two-dimensional or three-dimensional geometric domain,S  is the load boundary 

and Su  is the constraint boundary, The principle of virtual displacement in incremental form is 

established.  
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T T u
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Equation (16) is the equivalent integral form of equation (15), which can be solved by finite element 
method. Firstly, n finite elements are discretized of  ,and the displacement field u functions are 
expressed as the following approximate functions: 

    
1

n
e

e

 u N a Na                        (16) 

Among them,  e
a is the undetermined coefficients defined on the nodes,  N  are unit 

interpolation basis functions or shape functions, which are known as complete function sequences and 
are linearly independent. The so-called complete series of functions means that any function can be 
represented by this sequence. n represents the number of finite elements in which the domain   is 
discretized. By using Galerkin method and introducing formula (16) into equation (15), and then 
arranging and assembling the elements, the following general finite element equations can be obtained: 

Ka = F                                       (17) 
According to the naming method in elasticity, K it is called the global stiffness matrix, which is 

composed of element stiffness matrix eK . It describes the integral mapping relationship from equation 

(15) to form shape function N . a is known as the nodal displacement vector, it is actually a vector 

composed of undetermined coefficients e
a . It is known by formula (16) that the only definite field 

function u will be determined by a . F Iis the nodal load vector. Because of the nonlinearity of the 
equation, where the K is the function of a ,which can be solved by Newton-Raphson method. 

3.2.  Mathematical Model and Solution Method of Multi-objective Topology Optimization Problem 
The mathematical model of multi-objective topology optimization can be generally expressed as follows: 

   
   

1 2min [  , , ]

s.t. : g ,  0   1, 2,...
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Where , Φ is the objective function vectors consisting of m objective functions, gk , hl

representing inequality constraints and equality constraints respectively, a are obtained by the finite 
element equation (17),   is the regularized material density. In this paper, SIMP material interpolation 
method is used to relax the 0-1 programming topology optimization problem into a continuous variable 
optimization problem. The SIMP method was originally used to solve elasticity problems. The central 
idea is that the physical parametersC  of materials are expressed as the following functions of density
 : 

 min 0 min pl
e e  C C C C                             (19) 

C  is a vector composed of many physical parameters. Rubber material uses Mooney-Rivlin model, 
so it can be recorded as:  
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The density e of the element will be entered into the overall stiffness matrix K of the finite 

element equation (17) through equation (19). eC  is the physical parameters of the unit, when the 

elasticity problem is discussed. e  is the regularization density of the corresponding unit. 0C  is the 

physical parameter corresponding to the density of material when it is 1. minC is the physical parameter 

corresponding to the density min  of material when it is considered as a hole and no material. In order 

to avoid solving singularities, usually min 0 min0.001 , 0.001 C C , and the penalty factor 
introduced by SIMP method is usually taken, and the intermediate density value is eliminated by implicit 
penalty method. 

There are many methods to solve multi-objective optimization problems (18), but generally they can 
be classified into two categories: one is non-preference method, the other is Preference method. Non-
priority method means that the priority of each objective function can not be given beforehand, so only 
a Pareto optimization solution set (surface) can be obtained. Finally, a point on the Pareto surface can 
be selected as the final optimal solution by knowledge-based method. The principle of priority is to 
know the priority of each objective function beforehand, and then construct a new objective function to 
transform the multi-objective problem into a single-objective problem to solve, such as the weighting 
method. Because the multi-physical field topology optimization problem is a very large-scale 
optimization problem, it is not suitable to use the first kind of method, and the weighting method is a 
good choice. At present, the weighted method is widely used in engineering and has been successful. In 
this paper, the weighted method is used to solve the multi-objective problem. A new optimization 
problem constructed by weighting method can be expressed as:  
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Where, the weighted objective function  is newly constructed, m  represents the normalized mth 

objective function, and its corresponding weight coefficients m are satisfied by
1

1
m

i
i




  

3.3.  Sensitivity analysis method  
For optimization problems (21), mathematical programming methods such as sequential linear 
programming (SLP) and moving asymptote method (MMA) are usually used to solve them. When these 
gradient-based optimization methods are used, the first-order gradient (sensitivity) of all objective 
functions and constrained functions with respect to design variables   must be provided. Here, we use 
adjoint method to derive the first-order analytical sensitivity of the objective function. Consider the m th 
objective function 

 ,m dV 


   a                               (22) 

Where , functions  are defined on the domain . In order to derive the sensitivity of the objective 

function m , we introduce the Lagrange term to construct a new function *
m . 

 * T
m m   λ Ka F                             (23) 
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Bring equation (17) into (22) knowledge, , *
m m   and find the first derivative of design variables

  for (22) 
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                 (24) 

In order to eliminate the implicit term ida

d
, we introduce the adjoint problem:  

m
 


Kλ

a
                             (25) 

It can be seen from equation (22) that the value of Lagrange multiplier vector λ can be obtained by 

replacing the load vector F in equation (17) with a new vector



a

. Then the sensitivity of the 

objective function m is obtained by introducing (21):  

Tm md

d  
  

 
 

K
λ a                          (26) 

Where , 




K

 can be obtained directly by variational method. 

3.4.  Optimization algorithm  
Sequential linear programming (SLP) and moving asymptote method (MMA) are commonly used 
mathematical programming methods in topology optimization. The basic idea of SLP method is to 
expand the non-linear objective function and constraint function in Taylor series at the initial design 
point, retain the linear term, form a series of linear sub-optimization problems, and then solve them by 
linear programming method to obtain new design points. If the convergence requirement is not satisfied, 
the new design points are used to replace the initial point and re-expand Taylor series to form new linear 
sub-optimization problems. The problem is solved and iterated repeatedly until the convergence 
requirement is satisfied. The final design point is the optimal solution of the original problem. By 
introducing a moving asymptote, MMA transforms the implicit optimization problem into a series of 
more explicit and strictly convex approximation sub-problems. The approximation function is 
determined by the derivatives of the left and right asymptotic points, the original objective function and 
the constraint function at each point. MMA method is currently the most effective mathematical 
programming method for solving multi-objective topology optimization. 

3.5.  Expressions of stiffness, volume and fatigue objective functions for topological optimization of 
flexible rubber pipe clamp  
In this paper, the multi-objective topology optimization of flexible rubber tube clamps including 
stiffness, volume and fatigue objectives is discussed. The functional expressions of these objectives are 
deduced.  

(1) Stiffness object   
The stiffness objective function in the direction x , y , z  can be expressed by the displacement of 

the load boundary points, namely:  



REES2019

IOP Conf. Series: Earth and Environmental Science 300 (2019) 022090

IOP Publishing

doi:10.1088/1755-1315/300/2/022090

7

 

 1

1
sx

outa d


 
   r r                            (27) 

 2

1
sy

outa d


 
   r r                         (28) 

 3

1
sz

outa d


 
   r r                           (29) 

Where , 1a , 2a , 3a ,is the component of node displacement vector a  in x , y , z  direction 

respectively,      
T

x y zr is the position vector; outr is the position vector of displacement output 

point.  is a Dirac function: 
 

    
 
 

1  0

0  0

x
x

x


 
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                                 (30) 

After introducing the function  , the target at the discrete point in the design domain can be 
represented by the integral function, which forms the same format as the sum formula (22). Thus, the 
derivation of the sensitivity function above is also valid for the target at the discrete point. 

(2) Volume objective function  
The volume function can be expressed as 

1 V
V d f



  
                            (31) 

Where,   represents the total volume of the design domain and Vf is the percentage of the target 

volume to the total volume. Since the expression (27) does not contain an explicita  substitution (26), 
the sensitivity of the volume constraint function obtained is as follows: 

1Vd

d



                                  (32) 

(3) Fatigue objective function  
A large number of references reveal that the fatigue failure of rubber is mainly caused by the high 

strain energy density W at some points on the boundary of rubber structure. For uniaxial load, the 
fatigue life of rubber structure is as follows: 

     LF
fN MW                              (33) 

Where, M  is a constant related to the material; LF  is a value related to the cyclic load. Therefore, 

the objective function of fatigue life can be expressed as:  

        max( ) max( )
Te e

dura eW d d
 

      a K a              (34) 

Because the max function is a non-continuous function, it will make the optimization process difficult 
to converge. Therefore, the new objective function of fatigue life can be expressed by relaxing formula 
(34) to improve the differentiability of the function.  

          1

4
T T

dura d 


         a a aKa                  (35) 
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The  is Dirac function,  is used to represent the relaxation factor of fatigue life target. So far, ,

0.03  the objective function of fatigue life and the general objective function (22) have the same 
format, so the previous derivation of the sensitivity function is also valid for the fatigue life target. 

4.  Design Example of DN32 Flexible tube clamp  
Because the pipe clamp is axisymmetric, in order to solve the problem faster, the topology optimization 
problem of the tube clamp structure is simplified to a 2D axisymmetric problem as shown in Figure 1. 
Among them, the red area is the design area, and its material is rubber; the green area represents the 
non-design area, and its material is steel. Compared with the rubber material, it has great stiffness. 
Therefore, it is assumed that it is a rigid body, and the action point of force P is connected with it through 
the rigid element. The force condition and restraint condition of the flexible pipe clamp are shown in 
the figure. The flexible pipe clamp is made of rubber with the same batch of material experiments. The 
parameter identification shows that the Ogden model is used to describe the isotropic hyper-elastic 
rubber material, and its constitutive parameters are shown in Table 1. 

 

 

Figure 1. Design Domain and Boundary Conditions Diagram 
 
F1 = 1000N and F2 = 1000N represent the axial and radial forces acting on the flexible tube clamp 

under two working conditions respectively. According to the overall dynamic index of outboard pipeline 
system, the rigidity requirements of the flexible pipe clamp are: under the action of F1 and F2, the target 

displacement vectors are 1 [2  0]  mmT
out r , 2 [0  2]T

out mmr respectively,. Therefore, the multi-

objective topology optimization problem taking volume fraction 0.5Vf  and considering the x-

direction, Y-direction stiffness and fatigue life of flexible pipe clamps can be described as: 
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The weighted method is used to solve this multi-objective topology optimization problem. The 
optimization results are shown in Figure 2. The red area represents the area with material, the blue area 
represents the area without material, and the transition color between blue and red represents the 
intermediate density unit, which is removed in the detailed design stage. 

  

Figure 2. Topology optimization results of flexible tube clamp 

5.  Conclusion 
In this paper, non-linear multi-objective topological optimization method is used to study the multi-
objective structural topological optimization of rubber elastic tube clamps. The elastic tube clamp which 
satisfies the requirements of stiffness, strength and fatigue life is designed, and good application results 
are obtained. 
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