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Abstract. Climate change, heat waves and weather extremes unveil the need to counteract 

excess heat and its dramatic consequences on energy, economy, outdoor liveability and, above 

all, health. In the urban context, further concern arises from the concerted action of cities’ 

materials, fabric, layout, density and activities, which are responsible of heat and pollutants 

entrapment, of wind force breaking and sweltering microclimates. Ready-to-use, high-impact, 

smart, cost and energy-effective countermeasures are the only ones having chances to be 

widely implemented in the short haul. Against this backdrop, this work presents the results 

obtained from an experimental campaign conducted on a single mitigation technology, meant 

to reach high local temperature reductions and empowered with climate-adaptive features to 

be applicable close to any vulnerable target (e.g. schools, hospitals, hospices …): a web of 

smartly controlled mist sprayers. A prototype was designed and its impacts on the local 

microclimate were thoroughly characterized. Notably, the nozzle density was investigated to 

delineate the tradeoffs between evaporative cooling global magnitude and spatial dilution: in 

fact, by rarefying water emission, a larger air volume can partake to the cooling as it gets harder 

to reach saturation; conversely the point spatial temperature drop might weaken and become 

negligible, jeopardizing the whole mitigation strategy. This paper discloses such a 

controversial point and provides guidelines for the correct design of mist cooling systems for 

Urban Heat Island counteraction. 

1.  Introduction 

Cities have become complex and dynamic systems of political, economic and bio-physical forces with 

countless ramifications and interplays between natural and anthropogenic phenomena. Hence, a better 

understanding of the relations between societies, mass and energy flows is imperative to spot the 

potential for change to sustainable patterns of consumption and production [1].  

A major menace to urban prosperity and livability comes from the joint action of global warming and 

Urban Heat Island (UHI). UHI is the positive thermal balance of the cityscape compared to the rural 

surroundings, mostly due to the replacement of natural elements (greenery, water) with asphalt, brick, 

concrete and dark roofs that act like sponges for heat during the day and warmth emitters overnight. 

Consequently, urban areas tend to reach dangerous temperatures much faster and much more 

frequently than rural, less populated landscapes. 
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Today’s climatic upheavals have made the urge for bold UHI counteraction impossible to ignore.  

In 2018, unprecedented hot conditions swept through the planet: the temperature touched 43°C in 

Azerbaijan and stayed over 38°C for a week in Kyoto (Japan). In Norway (Oslo), the mercury hit a 

+5.9°C above the seasonal mean over a two-week stretch in June, while just a month later, a record-

breaking heatwave engulfed Canada (Quebec). Simultaneously, a high of about 48.8°C was recorded 

inland of Los Angeles. Residents blasted their air conditioners so much they caused power shortages 

[2]. Ultimately, this means that worldwide we are now divided into well-heeled residents who can 

afford living in conditioned spaces, and the vulnerable population taking refuge in the outdoors where 

the exhaust heat of the conditioners is poured. In this vicious cycle, ensuring heat-safe cities and livable 

outdoors has thus become a priority, not just as a global warming coping mechanism, but as a life saver 

against extreme weather events, given that such anomalies are envisioned to augment in frequency and 

amplitude [3][4].  

What mostly hinders large-scale interventions is not the scarcity of effective solutions, yet their 

economic burden. UHI mitigation calls for sophisticated on-site measurements and substantial urban 

remodeling, both of which are costly, time-consuming and rather invasive. Additionally, for some 

technologies (e.g. cool materials) ageing issues represent a strong disincentive to extensive 

applications [5][6]. 

This study is part of a wider intention to get through the economic and political hold-ups on coping 

with climate change, by proposing cost-effective, efficient and easily implementable solutions and 

providing experimentally substantiated design guidelines. 

Among the many mitigation technologies at mature state, we elected to investigate direct evaporative 

cooling by overhead nebulizers.  

When a fine water spray is injected by pressurized nozzles it induces absorption of latent heat from 

the surrounding moist air. Heat and mass transfer mechanisms are thoroughly described in the works 

by Kachhwaha [7][8] and Sureshkumar [9][10][11]. The potential applications in urban planning and 

street landscaping (with the purpose of cooling the ambient air) are countless and particularly efficient 

since the cool medium is close to the individuals: reportedly, the air could be cooled down by 7-10°C 

(ambient temperature of 30°C and 42°C respectively) [12], as further supported by simulation-based 

studies [13][14]. From a geographic perspective, spray cooling implementation is well suited for warm, 

temperate and humid climates, notably the humid subtropical (Cfa) and the hot-summer Mediterranean 

(Csa). The interest is also growing in Cfb contexts (mild winters and moderately warm summers) as a 

means to cope with the escalating frequency of weather extremes.  

Notwithstanding the cooling performance, water spray was also chosen for the following reasons: 

• the cloud of droplets exerts a variety of sanitizing effects on the surroundings: beyond reducing 

the temperature, it expels dust and scavenges pollutants [15], repels mosquitos and other 

insects [16][17], attenuates solar radiation, including the UV range responsible of erythema 

[18]; 

• as based on evaporative processes, its cooling action gets emphasized at higher dry bulb 

temperatures (and equal specific humidity) which comes in handy under heat wave 

emergency; 

• overhead systems 1) consume modest quantities of water, thus public fountains and similar 

might supply sufficient flow; 2) are light and compact thus they can be suspended without 

subtracting any walkable public land which facilitates bureaucracy. 

• No design guidelines exist in literature, despite the wide use to create pedestrian cool spots 

[19–29]. Yet, harmonizing the cooling action of multiple fine droplets injections is no trivial 

matter. It entails proper selection and setting of: 

• nozzle geometry: according to Farnham et al. [27], single-nozzle nebulizers with Sauter mean 

diameter between 41 and 45µm could provide non-wetting or nearly non-wetting cooling, 

without significant performance loss due to the tiny size as also demonstrated by Yoon and 

Yamada [30]. Accordingly, we selected hollow-cone micro-nebulizers with diameter 

distribution centred around 10µm. In this case, thermal balance with the surrounding air occurs 
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within approximately 8mm of the orifice [31] causing negligible net cooling loss because of 

the initial sensible heat transfer; 

• water pressure: the use of constant pressure pumps is recommended to cope with dirt, 

limestone, dust and corrosion agents that could easily occlude the orifices and alter the cooling 

performance. High pressure systems are preferred as the cooling efficacy gets enhanced [32]. 

Consequently, we selected a 70-bar self-compensating pump.  

• Injections height: the relative distance between nozzle and user determines the potential for 

wetting and the cooling magnitude users may experience. We investigated the best setup in 

[33] by harmonizing environmental measurements and personal feedbacks via statistical tests, 

regressions and data mining algorithms. Among other results, we estimated the optimal height 

within 1.2 and 1.5m of users’s head. 

• Pump control logic: water spray boasts a huge potential for local cooling (up to -10°C [34]). 

Such a strong action might turn counterproductive in case of temperate climates. In another 

previous study [35], we demonstrated the ability of fuzzy logic to tweak the water injection to 

track thermal neutrality. The logic pondered the cooling action based on all the major 

environmental drivers for evaporative cooling (temperature, relative humidity, wind and solar 

radiation). It was found to consume up to nearly 70% less than a standard temporized on-off. 

• Nozzle density: in multi-nozzle systems another key player is the relative distance between 

the injections. A plurality of physical processes occurs in their mutual interaction, namely 

stochastic collisions, coalescence and break-up (also considering secondary impacts among 

child particles).  

• In this context, defining the optimal nozzle density was the objective of this work, so as to 

provide a comprehensive design guideline. In the following paragraphs materials and methods 

are described before discussing the experimental results. 

2.  Materials and methods 

The prototype consisted of a high pressure pump (70bar, 919W), a polypropylene filter and about 50m 

of polyammide tube, arranged in 4 parallel strings, about 1m away from each other and suspended 

approximately 3m above the ground (see Figure 1). Each line accommodated 6, 1-m spaced nozzles 

(thus 24 in total) and could be bypassed by closing the corresponding shut-off valve. Each nozzle was 

secured in place by a couple of clips to fix the jet direction. The water flow absorption was very modest 

(between 0.7 and 1.5 l/min), thus a simple branch from public fountains provided enough supply. The 

total cost was less than 1400€. Besides, with extra 200€, the same pump could have supplied 48 nozzles 

(the double) and cover a surface of nearly 40m2, with cooling effects further protracted for about 20m 

from the perimeter and even 3 times more in canyon shaped environments, as substantiated by 

monitoring data and other existing literature on the topic (e.g. [13]). Thus, the minimum cooled area 

covered approximately 3,600m2. The cost for an equal coverage of cool pavements, considering 

average-efficiency, walkable materials, would have been 16 times more, according to the Italian 

market [36],not counting the huge infrastructure remodeling costs and the bureaucratic effort.  

The pump was controlled and automatically operated via a Virtual Instrument (VI) programmed in 

LabVIEW to avert unnecessary wear-and-tear and stop in case of rain. The energy consumption was 

recorded by incorporating a counter that kept track of the activations.  

The prototype was assembled on the terrace of the Faculty of Engineering, Università Politecnica 

delle Marche (Ancona, Italy, 43°35'13.3"N 13°30'54.0"E, 160m a.s.l.). On the top of a hill, this west-

oriented open space stays sunny and windy for the most of the summertime in the context of a mild, 

yet very humid temperate climate (Cfa class according to Köppen and Geiger [37]) with significant 

rainfall (757mm annual average).  

The campaign was conducted over 12 days in July and August, the hottest months of the year. Mist 

cooling was activated between 10am and 8pm all the days and operated according to the fuzzy logic 

described in [35]. For 6 days only two rows of nozzles were active (Partial Load, “PL” from now on) 

2m distant one from the other. Later, other 6 days were devoted to the full load configuration (termed 

“FL”), representative of 1m distant strings. Two main groups of sensors were installed to characterize 
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both the cooled environment and an undisturbed location, to be used as a reference for cooling and 

humidification calculations. The cooled microclimate was mapped by five miniaturized 

thermohygrometers (PCMINI52 by Michell Instruments) which come with a response time below 10s 

and anti-wetting and solar-shielding plastic protections.  The five sensors were located right beneath 

the 4 strings, in the mid-points of the ground-projected perimeter and in the middle of the sprayed area. 

They were mounted on thin vertical aluminium rods at 1.1.m, to be representative of breast-height for 

a standing person and head-height for a sitting person (see ISO 7726 [38]). 

The undisturbed location was monitored by a meteorological station composed by a 

thermohygrometer, a tacogonioanemometer and a global radiometer to record the concomitant air 

temperature, humidity wind and solar radiation about 50m away, on the same terrace. The specs of the 

sensor network are provided in Table 1.  

The sampling rate was 10s to enhance the control logic sensitivity and responsiveness. The analysis 

was conducted over 1-minute averaged data to mitigate the measurement uncertainty.  

Additionally, prior to the monitoring campaign, we test checked the system and performed daily 

measurements of the water temperature (using a Pt100) to portray the daily swings due to heat 

transmissions along the pipe. 

Table 1. Measured variables and sensors’ specifications. 

Measure Sensor type Height  Range Accuracy Responsiveness 

COOLED AREA 

Air temperature + 

Relative 

humidity 

Mini 

Thermo 

hygrometer 

1.1m 
-20°C÷80°C 

0 ÷ 100% 

±0.2°C 

±2% (10-90%) 
T (90%)<10s 

UNDISTURBED AREA 

Air temperature + 

Relative 

humidity 

Pt100 + 

capacitive 

hygrometer 

1.7m 
-30°C÷70°C 

0 ÷ 100% 

0.2°C 

1.5% (5 ÷ 95%, 23 °C) 

2% (<5, >95%, 23 °C) 

T (90%)=10s 

Wind velocity 

and direction 

Cup 

Anemometer 
2.0m 

0 ÷ 60m/s 

0 ÷ 360° 

1.5% 

1 

τ(63%)=2.5s 

τ(63%)=0.7s 

Solar radiation 
Global 

Radiometer 
1.5m 0 - 2000W/m2 < 5% T (90%)<30s 
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Figure 1. Monitoring setting: 3D model of the University terrace on top, the four strings of 

overhead nebulizers at the left bottom and close-up on a single nozzle at the right bottom (detail 

and section). 

3.  Theory and calculations 

Nebulization produces a quasi-isoenthalpic adiabatic saturation. If we consider the thermal balance of 

the evaporating mist as a whole, the governing processes of latent and sensible heat transfer are 

respectively formalized as follows: 

𝑄𝑙𝑎𝑡 = 𝑟 ∙ 𝑚𝑒 (1) 

𝑄𝑠𝑒𝑛𝑠 = 𝐶𝑝 ∙ 𝑚 ∙ (𝑡0 − 𝑡𝑎) (2) 

Where r is the latent heat of evaporation, taken at 2.45•106 J/kg and referred to the mass of 

evaporating droplets me, while Cp is the specific heat capacity of water (thus to be referred to the whole 

mass m) equal to 4184 J/kg°C. Hence, even in the worst scenario of maximum recorded initial water 

temperature (36°C) and minimum air temperature accepted by the fuzzy controller (25.2°C), the initial 

sensible heat loss would have cancelled a negligible 1.85% of the cooling power. 

Temperature and humidity beneath the spray were analyzed 1) in time, to quantify the rate of 

change, spot daily patterns and detect any significant secondary evaporation by comparing the readings 

over the whole observation window (10am-8pm) and those during the injection; 2) in space, to quantify 

the zonal variability among the five points of measurement and to quantify the mitigation action against 

the reference location.  
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Additionally, to directly compare the two configurations we focused on two days of equal boundary 

conditions so as to isolate the contribution of the different nozzle density from that of the climatic 

context. On those days, we computed the evaporative cooling efficiency of the nebulizers in the two 

configurations, by dividing the daily average cooling by the absorbed electric energy, as follows: 

𝜂 =
𝐶𝑝 ∙ 𝑚𝑡 ∙ 𝐷𝑡_𝑎𝑣𝑔 

𝐸
 

(3) 

where mt is the total water flow processed over the day and Dt_avg is the daily mean of the temperature 

difference between the outdoor temperature and the cooler measured point under the spray, calculated 

considering only the time over which the pump was running. 

Finally we addressed the ability of preserving comfortable conditions by tracking comfort neutrality. 

4.  Results 

The focus was first on the recorded temperature drop, as it connotes the technology’s mitigation 

potential. Then we verified that the temperature and humidity variations moderately and evenly 

distributed beneath the spray. Concomitantly, we looked at energy conservation and comfort 

preservation.  

To identify the two days of equal boundary conditions between PL and FL, we produced Table 2: 

30 July and 19 August (bordered rows in the table) differed by less than 0.5°C in terms of mean air 

temperature, by less than 5% in terms of mean relative humidity, by less than 0.25m/s in terms of wind 

speed and by less than 100 W/m2 in terms of solar radiation.  

Table 3 summarizes the main statistics on the cooling achieved by the nebulizing system both in 

partial and full load configuration by comparing the temperature recorded under the spray to that of 

the meteorological station. We considered the maximum, average and minimum (Dt_max, Dt_min, 

Dt_avg) among the five measured points. For each, we computed the daily absolute maximum, the 

99th and 50th percentiles (median), the inter-quartile range (IQR) and the minimum. The calculation 

was then repeated only for the time slots of effective pump operation (in bold letters).  

The following bullet points recap the main findings: 

• on the days of direct comparison (marked by a dashed border in Table 3), the discrepancy 

between PL and FL was greatly emphasized: interestingly, the difference in terms of maximum 

and 99th percentile was fairly stable at 2°C, considering Dt_max, Dt_min and Dt_avg as well, 

while that in terms of median was 1°C lower, yet still constant (notably considering the time 

slots of actual misting). The IQR was comparable.  

• The FL efficiency η was 20.4% versus 16.7% achieved by the PL setup. This is a 

comprehensive performance parameter, suitable for comparative analysis, since it considers 

both the hydric and electric consumption. 

• Under FL, the absolute maximum touched 7.4°C against 6.4°C reached by PL. Either case, it 

was recorded on the hottest days, namely the 28th of July for PL and the 13th of August for FL, 

with daily average temperature of 35.6°C and 32.6°C respectively: this is perfectly in line with 

previous results [35] and consistent with the underlying physics: indeed, evaporative cooling 

is more incisive as dry-bulb temperature rises at equal specific humidity, because the higher 

partial pressure difference boosts the evaporation rate. 

• Under PL, negative minimum values were much more frequent and accentuated (+10% 

occurrences, +24% magnitude compared to FL), meaning that temperatures could be higher 

beneath the spray than in the surroundings because of severe dilution due to wind entrainment: 

the chances of coalescence and mutual confinement dropped, depreciating the cooling and 

deteriorating controllability as well.  

• Under PL, no significant inertial processes occurred. Maxima, minima and averages showed 

no offset between the whole observation window and the times of active misting. Conversely, 

under FL operation, notably on cloudy and fresher days (refer to the 15th of August), the 

temperature could further drop by 1.5°C, after the injection ceased. Indeed, coalesced, larger 

drops from the multiple, closer injections, may have reached the ground and the surfaces all 
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around, under lower solar radiation and partial pressure difference: this might have introduced 

significant secondary evaporation. This was especially evident in terms of maxima and 99th 

percentile; the offset between medians was much less pronounced, meaning that such inertial 

effects were sporadic. 

Table 2. Climatic context during the two monitoring runs. The 14th of August was a rainy day and 

was thus excluded. 

DATE LOAD ta [°C] 

RH 

[%] ws [m/s] 

Ioh 

[W/m2] E [kWh] Q [m3] 

Dtmax 

[°C] 

Dtmin 

[°C] 

Dtavg 

[°C] 

25-lug PL 30,1 61,8 3,1 695,6 
 

0,16 1,88 0,23 

1,1

2 

26-lug PL 31,4 51,4 2,1 683,3 
 

0,16 2,72 0,65 

1,6

7 

27-lug PL 29,2 62,1 3,1 696,9 
 

0,07 1,81 0,13 

1,0

2 

28-lug PL 35,6 48,9 2,2 675,3  0,20 3,95 0,59 

2,0

8 

29-lug PL 31,0 60,2 2,5 649,8  0,15 1,98 0,42 

1,1

7 

30-lug PL 30,5 71,3 3,2 671,8  0,16 1,62 0,24 

0,9

8 

13-ago FL 32,6 57,4 2,8 619,1  0,45 2,74 0,05 

1,3

3 

15-ago FL 29,0 59,9 2,9 525,3  0,19 2,18 0,95 

1,5

2 

16-ago FL 30,0 50,8 2,2 633,0  0,30 2,29 0,38 

1,3

6 

17-ago FL 29,8 57,9 2,5 632,2  0,23 2,32 0,27 

1,3

5 

18-ago FL 29,9 66,8 2,5 621,2  0,25 2,51 0,97 

1,8

1 

19-ago FL 30,2 68,7 3,3 596,8  0,33 2,57 1,36 

2,0

1 

 

 

  

3,50

3,44

1,59

4,18

3,17

3,46

4,60

1,99

3,11

2,37

2,52

3,35
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Table 3. Daily cooling statistics: PL (on the left) versus FL (on the right). 

 

D

A

Y 

L

O

A

D  

MAX 
99°

P 

50°

P 
IQR MIN 

D

A

Y 

L

O

A

D  

 MAX 
99°

P 

50°

P 
IQR MIN 

2
5
 J

u
l 

2
0
1
8
 

P
A

R
T

IA
L

 

Dt_ma
x 

4,03  3,79 2,06 1,10 -0,13 

1
3
 A

u
g

 2
0

1
8
 

F
U

L
L

 

Dt_ma
x 

7,39  6,81 2,76 1,98 -0,20 

4,03  3,83 2,17 0,64 0,21 7,39  6,86 2,94 1,83 0,03 

Dt_mi
n 

1,43  1,24 0,68 1,05 -3,11 Dt_mi
n 

1,54  1,47 0,55 1,47 -1,37 

1,43  1,25 0,77 0,35 -1,83 1,54  1,47 0,79 1,34 -1,24 

Dt_avg 
2,08 

2,08  

 2,03 1,44 1,05 -0,77 
Dt_avg 

2,91  2,71 1,63 1,60 -0,85 

2,08  2,05 1,54 0,41 -0,31 2,91  2,74 1,81 0,90 -0,40 

2
6
 J

u
l 

2
0
1
8
 

P
A

R
T

IA
L

 

Dt_ma

x 

4,97  4,66 2,92 1,62 0,00 

1
5
 A

u
g

 2
0

1
8
 

F
U

L
L

 

Dt_ma

x 

5,08 

5,08  

 4,62 2,41 1,35 -0,34 

4,97  4,68 3,12 1,24 0,99 3,59  3,51 2,46 0,53 0,47 

Dt_mi

n 

2,17  2,10 0,99 1,20 -2,76 Dt_mi

n 

3,04  2,96 1,10 1,13 -1,62 

2,17  2,12 1,32 0,85 -2,76 1,61  1,54 1,17 0,29 -1,43 

Dt_avg 
3,12  3,04 1,86 1,31 -0,45 

Dt_avg 
3,68  3,50 1,67 0,88 -0,54 

3,12  3,05 2,02 0,77 0,23 2,27  2,20 1,75 0,30 0,08 

2
7
 J

u
l 

2
0
1
8
 

P
A

R
T

IA
L

 

Dt_ma

x 

3,66  3,43 1,90 1,48 0,17 

1
6
 A

u
g

 2
0

1
8
 

F
U

L
L

 

Dt_ma

x 

4,45  4,27 2,52 1,57 -0,31 

3,08  3,06 2,30 0,66 0,48 4,38  4,20 2,59 0,43 1,20 

Dt_mi

n 

1,45  1,37 0,57 1,13 -2,97 Dt_mi

n 

1,56  1,45 0,86 1,53 -2,18 

1,45  1,39 0,97 0,37 -2,31 1,56  1,49 1,19 0,33 -1,79 

Dt_avg 
2,25  2,17 1,29 1,28 -0,56 

Dt_avg 
2,57  2,35 1,76 1,17 -0,58 

2,25  2,20 1,70 0,40 -0,18 2,57  2,45 1,88 0,30 0,61 

2
8
 J

u
l 

2
0
1
8
 

P
A

R
T

IA
L

 

Dt_ma

x 

6,39  6,23 4,25 1,91 0,20 

1
7
 A

u
g

 2
0

1
8
 

F
U

L
L

 

Dt_ma

x 

4,73  4,50 2,63 1,66 -0,29 

6,39  6,23 4,41 1,31 0,95 4,54  4,25 2,74 0,45 0,65 

Dt_mi

n 

1,97  1,86 0,96 1,33 -2,98 Dt_mi

n 

1,95  1,83 1,10 2,29 -3,97 

1,97  1,86 1,11 1,05 -2,84 1,95  1,82 1,42 0,38 -3,67 

Dt_avg 
3,27  3,15 2,40 1,23 -0,02 

Dt_avg 
2,94  2,62 1,80 1,48 -0,95 

3,27  3,15 2,49 0,79 0,42 2,94  2,60 2,08 0,49 -0,78 

2
9
 J

u
l 

2
0
1
8
 

P
A

R
T

IA
L

 

Dt_ma

x 

4,06  3,77 2,31 1,61 -0,33 

1
8
 A

u
g

 2
0

1
8
 

F
U

L
L

 

Dt_ma

x 

5,42  5,23 2,79 1,29 0,05 

4,06  3,82 2,47 0,65 0,33 5,42  5,21 2,98 0,35 0,39 

Dt_mi

n 

1,42  1,38 0,82 1,42 -2,48 Dt_mi

n 

2,53  2,41 1,56 1,87 -2,13 

1,42  1,40 1,01 0,38 -0,84 2,39  2,35 1,85 0,26 -1,47 

Dt_avg 
2,23  2,15 1,54 1,27 -0,78 

Dt_avg 
3,50  3,35 2,22 1,30 -0,29 

2,23  2,19 1,70 0,34 -0,16 3,43  3,33 2,52 0,28 0,29 

3
0
 J

u
l 

2
0
1
8
 

P
A

R
T

IA
L

 

Dt_ma

x 

3,32  3,11 1,92 1,22 -0,47 

1
9
 A

u
g

 2
0

1
8
 

F
U

L
L

 

Dt_ma

x 

5,35  5,10 2,80 1,25 0,12 

3,32  3,16 1,97 0,57 -0,13 5,35  5,15 2,97 0,72 0,89 

Dt_mi
n 

1,42  1,30 0,61 1,14 -2,28 Dt_mi
n 

3,46  3,13 1,47 1,18 -1,05 

1,42  1,30 0,73 0,54 -1,54 3,46  3,16 1,66 0,82 -0,53 

Dt_avg 
2,14  2,01 1,30 1,16 -0,85 

Dt_avg 
4,14  3,77 2,22 1,32 -0,10 

2,14  2,02 1,42 0,59 -0,48 4,14 

2,14  

 3,88 2,46 0,88 0,24 
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Table 4 complements the information in Table 3 by looking at the cooling and humidification rate. 

We computed the 1-minute variation recorded by each probe and derived the maximum, the average 

and the standard deviation. Maxima were further investigated 1) by looking at when and where the 

daily absolute occurred, considering also the aggregated water flow given by the antecedent injection 

duration and 2) by perusing the frequency distribution among the five locations (indicated with the 

initials of “centre”, “north”, “south”, “west”, “east”) to spot the most responsive zones at any time of 

the day.  

The most important results are summarized below: 

• the maximum temperature drop in a minute time was close to -1°C for both the setups. No 

repetitive pattern could be associated to the time of the day or to the spraying duration. In 

contrast, a sharp proclivity to uneven distributions among the five monitored sub-zones 

emerged under FL operation (much less under PL): the south oriented location was almost 

always the coolest spot (both in terms of absolute maximum and in terms of daily occurrences), 

as a result of dominant winds from north-west.  

• The maximum humidity increment under FL operation was twice that under PL’s (+13.4% 

versus +7.8%) and frequently occurred late in the afternoon. This unbalance was expected. 

With over +10% humidity in a minute time, the FL configuration was responsible of temporary 

hygrometric discomfort: the 70% limit proposed by Ishii et al. [39] was trespassed on all the 

monitoring days, although for a very limited time frame, peaking at 84% on the 19th of August. 

On average, the relative humidity beneath the spray was lower than 65%, which is the limit 

proposed by Dominguez [28]. Deeper investigation of the humidity implications was 

conducted in [35] on the same setup. 

• On the days of direct comparison (bordered in Table 4), the rate of change was pretty much 

equal. 

Table 4. Cooling and humidification rates. 

    COOLING RATE: ΔT-/min 

    max cooling avg standard 

deviation 

DATE 

 [°C] where when 

spraying 

duration 

[s] 

spatial distribution [% of occurrence] 

          C E S W N     

25/Jul PL -0,69 W 
 

30 19,72 16,96 23,18 20,07 20,07 -0,17 0,13 

26/Jul PL -0,89 S 
 

70 12,24 15,38 27,62 19,58 25,17 -0,20 0,16 

27/Jul PL -0,52 W  110 16,28 20,93 21,71 24,81 16,28 -0,19 0,13 

28/Jul PL -1,07 S  180 17,35 15,82 24,23 17,09 25,51 -0,21 0,16 

29/Jul PL -0,66 E  160 19,57 16,30 25,72 16,67 21,74 -0,17 0,12 

30/Jul PL -0,57 S  100 16,44 22,60 24,66 15,41 20,89 -0,15 0,10 

13/Aug FL -0,96 S  240 13,72 15,21 33,17 17,96 19,95 -0,21 0,15 

15/Aug FL -0,52 S  50 14,37 16,17 33,53 15,57 20,36 -0,17 0,12 

16/Aug FL -0,72 S 
 

60 14,29 13,91 31,20 18,80 21,80 -0,17 0,13 

17/Aug FL -0,94 S 
 

60 16,13 16,67 27,42 16,13 23,66 -0,17 0,13 

18/Aug FL -0,40 W  80 16,67 13,33 26,67 21,43 21,90 -0,13 0,10 

19/Aug FL -0,48 S  30 14,73 13,18 31,78 18,60 21,71 -0,15 0,10 

    HUMIDIFICATION RATE: ΔRH+/min     

    max humidification avg 

11:28

13:49

14:00

18:31

18:01

13:34

12:31

15:01

16:53

18:12

13:39

11:20
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DATE 

 [%] where when 

spraying 

duration 

[s] 

spatial distribution [% of occurrence] 
standard 

deviation 

          C E S W N     

25/Jul PL 4,16 E  190 12,64 18,77 27,80 22,02 18,77 1,03 0,82 

26/Jul PL 6,93 S  80 10,47 21,66 28,16 23,83 15,88 1,43 1,26 

27/Jul PL 3,53 E  30 16,67 15,87 26,19 27,78 13,49 0,97 0,68 

28/Jul PL 7,78 N  110 9,32 25,75 21,37 22,47 21,10 2,01 1,39 

29/Jul PL 5,97 E  20 14,52 18,55 27,02 23,39 16,53 1,10 0,90 

30/Jul PL 5,10 W  50 8,78 19,85 29,39 19,47 22,52 1,11 0,87 

13/Aug FL 13,39 S  40 9,09 15,72 30,47 20,88 23,83 3,35 2,24 

15/Aug FL 10,84 S  30 5,16 21,29 36,77 19,35 17,42 2,78 2,40 

16/Aug FL 10,58 W  170 9,48 16,81 35,34 18,97 19,40 2,58 2,33 

17/Aug FL 11,28 C  50 12,00 16,50 35,50 22,50 13,50 1,89 1,97 

18/Aug FL 8,53 S  20 8,05 20,69 35,06 21,84 14,37 1,68 1,53 

19/Aug FL 7,96 E  50 5,96 21,10 39,91 16,97 16,06 1,43 1,14 

Finally, to complete the comfort assessment we quantified frequency and magnitude of deviation 

from the neutral temperature, namely the temperature at which people claim to feel neither cool nor 

warm on average [40]. It coincides with the central thermal sensation in the ASHRAE 7-point scale. 

In our study, the neutral temperature was set at 27.2°C according to a transveral survey conducted in 

Rome [41]. To verify which configuration closely tracked the comfort zone, we binned the offset from 

thermal neutrality into progressively larger bands and plotted for each of them the number of 

occurrences (Figure 2). We compared the 30 July and 19 August measurements. FL blatantly 

outperformed PL: it guaranteed an almost perfect tracking of comfortable conditions by keeping the 

offset at less than 1°C for the 37% of the time (against only 8% under PL) and over 3°C for about the 

12% of the time (against the 73% under PL).  

 

Figure 2. Frequency distributions of Dt_neutral in progressively larger bands. 

  

12:02

10:01

16:00

16:13

17:13

17:15

13:37

12:41

15:40

18:47

14:44

15:20

0.00

5.00

10.00

15.00

20.00

25.00

30.00

35.00

40.00

45.00

50.00

 0.25 C  0.5 C  1 C  2 C  3 C  5 C OVER

7.33 6.67

22.67

51.00

12.33

0.00 0.000.00 0.58

7.51

18.88

6.36

21.77

44.89

P
er

c
en

ta
g
e 

o
f 

O
cc

u
r
re

n
c
e 

[%
]

Offset from Neutral Temperature

PL FL



SBE19 Milan - Resilient Built Environment for Sustainable Mediterranean Countries

IOP Conf. Series: Earth and Environmental Science 296 (2019) 012025

IOP Publishing

doi:10.1088/1755-1315/296/1/012025

11

 

 

 

 

 

 

5.  Conclusions 

An experimental study was conducted to investigate how nozzle density affects the cooling and 

humidification profiles of overhead misting systems used to mitigated potential outdoor overheating.  

The prototype consisted of 24, 1m-interspaced nozzles arranged in 4 rows at about 3m above ground 

level and served by a high-pressure, self-compensating pump. Each branch was fit with a shut-off 

valve: in this way we could monitor both full load conditions (FL) and partial load conditions (PL with 

only two active branches, at about 2m one from the other). The campaign took place in the context of 

a very humid and rainy temperate climate over 12 days of the hottest months. Mist cooling was 

activated between 10am-8pm and operated according to the fuzzy logic described in [35].  

We concluded that FL was the best option by far, given that: 

• the cooling capacity was enhanced (FL’s maximum of 7.4°C against PL’s maximum of 6.4°C) 

going 2°C further down than PL under equal boundary conditions; 

• PL was much more susceptive to wind entrainment. The cooling was thus ineffective on a 

much higher number of occasions, deteriorating controllability as well; 

• under partial load, no significant inertial processes intervened. Secondary evaporation 

basically never reinforced the mitigation action; 

• the efficiency η was 20.4% versus 16.7% achieved by the PL setup, considering both hydric 

and electric consumptions; 

• FL guaranteed an almost perfect tracking of comfortable conditions by keeping the offset at 

less than 1°C for the 37% of the time (against only 8% under PL) and over 3°C for about the 

12% of the time (against the 73% under PL).  

On the other hand, FL favored uneven spatial distributions and greater humidity incremental rates. 

Borrowing from previous studies too, the authors conclusively suggest that a 1-m dense web of 

nebulizers suspended at about 1.5m from people’s head and fuzzy controlled might truly come in 

handy against outdoor overheating, notably in urban contexts and under heat wave emergency. This 

results were experimentally substantiated for Cfa climate. Further investigation might be appropriate 

to extend their validity to other contexts. 
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