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Abstract. Wind energy, which is intermittent due to the irregular and non-stationary 
characteristics of wind speed, can have a significant impact on power grid security. It is 
important to improve the accuracy of wind speed forecasting models for the wind generation. 
However, due to the nonlinear and intrinsic complexity of weather parameters, it is difficult to 
predict wind speed accurately by using different patterns in different locate. In this paper, a 
new hybrid wind speed forecasting model is constructed based on a back-propagation  neural 
network(BPNN) and the idea of eliminating noise effects by using ensemble empirical mode 
decomposition(EEMD) method and eliminating seasonal effects from actual wind speed 
dataset using seasonal exponential adjustment(SEA). The hybrid EEMD-SEA-BPNN models 
are proposed to forecast the wind speed effectively in Huan County of Loess Plateau in China; 
numerical results demonstrate that the hybrid EEMD-SEA-BPNN model has better forecasting 
performance.

1. Introduction 
Wind energy, which is generated by atmospheric motions, is one of the predominant alternative 

sources of new renewable energy resource with its pollution-free and reproducibility. According to 
The Global Wind Power Casting Industry 2016 Market Research Report [1], the global wind power 
industry installed another 54.6GW and the global cumulative installed capacity of wind power reached 
486.7GW with an increase of 12.6%.  

It is important foundation and premise of wind power and wind farm generation prediction to 
improve the accuracy of wind speed forecasting model for wind park management. However, due to 
the disadvantages of intermittent and fluctuating, as well as low energy density, it is difficult to predict 
wind speed accurately by using different patterns in different locate. There are many statistical models 
and machine learning models have been developed to predict the wind speed. Statistical models 
primarily use a time series approach and have been successfully applied for forecasting based on the 
assumption that a linear correlation structure exists among time series values. [2-5]. Therefore, non-
linear patterns cannot be captured using these statistical models. To overcome these shortcomings, 
neural network models such as BPNN, support vector machines (SVM) and radial basis function (RBF) 
neural network have been used to improve the accuracy of wind speed  predictions [6-13].  

In general, wind speed forecasting models can be classified as short-term predictions and long-
term predictions according to the different time scale. For short-term predictions, it is important in 
minimizing scheduling errors due to the wind speed characteristics of the nonlinear and intrinsic 
complexity which will have an impact on the power grid reliability and add additional costs in market-
based ancillary service [14]. Riahy et al. [15] constructed a linear short-term wind speed forecasting 
model based on the observation that filtering out less effective frequency components from a wind 



ICEMEE2019

IOP Conf. Series: Earth and Environmental Science 295 (2019) 012030

IOP Publishing

doi:10.1088/1755-1315/295/2/012030

2

 

speed spectrum can increase the correlation between real and predicted wind speed. Sancho et al.[16] 
presented a method of exploiting the diversity in input data using banks of neural networks model for 
short term wind speed forecasting, which have better forecasting performance compared with  single 
neural networks. For long-term wind speed predictions, precise forecasting is important for 
performance prediction,  site selection and selection of the optimal wind machine size for a particular 
site et al.  [17]. Jujie Wang et al. [18] presented a hybrid SAM-ESM-RBFN model based on the 
seasonal adjustment method (SAM), exponential smoothing method (ESM), and radial basis function 
neural network (RBFN) to predict the mean hourly wind speed of two meteorological stations in the 
Hexi corridor of China and obtained better prediction performance. Zhenhai Guo et al. [19] 
constructed a new hybrid SEA-ARMA models and SEA-GARCH to forecaste the long-term wind 
speed in the Hexi corridor of China, the numerical results show that the developed models have higher 
accuracy than the single time series model such as ARMA and GARCH. 

In this paper, the technique of  time series analysis combined with an artificial neural network is 
adopted to deal with the chaotic and intrinsic complexity of the wind speed time series. The focus of 
this study falls into the short-term predictions and the predictions of the daily average wind speed one 
year ahead. In order to evaluate the daily average wind speed in Huan County of China, the seasonal 
exponential adjustment (SEA) method is used to eliminate seasonal effects and the ensemble empirical 
mode decomposition (EEMD) method is used to eliminate noise effects from actual wind speed 
datasets. The hybrid EEMD-SEA-BPNN models are presented to forecast the wind speed in Huan 
County of Loess plateau in China; numerical results show that the hybrid EEMD-SEA-BPNN models 
have better forecasting performance compared with forecasting models such as BPNN, SEA-BPNN 
and EEMD-BPNN. 

 2. Theoretical model and calculation method 

2.1 Ensemble empirical mode decomposition (EEMD) 
In reality, the wind speed are influenced by a variety of factors and the noisies are mixtured with 

the wind speeds, forecasting the wind speed time series directly often has large error. In order to 
overcome this disadvantages, the data pre-process technique EEMD is used to counterbalance this 
weakness . 

EEMD, which is extended from EMD to overcome the drawback of mode mixing, is an effective 
self-adaptive data processing method to decompose the non-linear and non-stationary time series[25]. 
The key of EMD is to decompose complex signals into finite intrinsic mode function (IMF) which 
satisfying the following two conditions:1) the number of maxima and minima and number of zero 
crossings must be equal, or different at the most by one in each whole function, and 2) the functions 
must be symmetric with respect to local zero mean. The decomposed IMF components contain local 
characteristic signals of different time scales of original signals. The EMD decomposition process is as 
follows: 

1) Find out all the upper and lower envelope of the original time series ( )x t through the cubic 

spline function. 
2) The first IMF is calculated as 

1 1( ) ( ) ( )h t x t m t           (1) 

where 1( )m t denote the mean value of upper and lower envelope. It is difficult to obtain the IMF by 

one decomposition because wind speed time series consists of linear and nonlinear patterns and there 
are still some asymmetric waves exist in 1( )h t , therefore, repeat the above process k times 

for 1( )h t until 1( )h t satisfy the conditions of IMF, that is 

1( ) ( ) ( )k k kh t h t m t  .     (2) 

The first component of IMF denoted as
1
( ) ( )

k
f t h t . 
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3) The residual signal is denoted as 1( )r t , where 

1 1( ) ( ) ( )r t x t f t  .                       (3) 

4) The second component of high frequency
2
( )f t  can be obtained by regarding 1( )r t as the original 

time series and repeat the above process. Repeat above steps n  times,  there are n  IMFs are obtained, 
that is 

2 1 2

3 2 3

1

( ) ( ) ( ),

( ) ( ) ( ),

( ) ( ) ( ).n n n

r t r t f t

r t r t f t

r t r t f t

 

 

 










         

(4) 

The decomposition process stopped when the termination condition of the residual component is  a 
monotonic function and it cannot be decomposed as IMF. 

The original wind speed time series ( )x t can be repressed as 

1

( ) ( ) ( )
n

i n
i

x t f t r t


  ,       (5) 

where 
1

( )
n

i

i

f t


 is the average variation trend of original series and the residual component 

( )nr t regarding as noises. Because each IMF of the EMD has different frequency component, which 

leads to the frequency mixing phenomenon occurs and unachieved effective result. The EEMD, which 
is extended from EMD to overcome the drawback of frequency mixing, is widely used to decompose 
non-linear and non-stationary signal sequences [33,36]. It defines the true IMFs components as the 
mean of an ensemble of trials and each trial consists of the decomposition results of the signal plus a 
white noise of finite amplitude. EEMD decomposition principle is: when added white noise is 
uniformly distributed throughout the time-frequency space, the time-frequency space is divided into 
different scales by the filter group components. When the signal with uniform distribution of white 
noise background, the different scales of signal area will be automatically mapped to the appropriate 
scale of associated with the white background noise, each individual test may produce very noisy as a 
result, this is because each additional noise components including the white noise signal and the 
additional. Since noise is different in each individual test, when using enough to test all the average, 
the noise will be eliminated. The average of the last will be considered the real results, as more and 
more testing, additional noise is eliminated, the only persistent part is the signal itself.  

In this paper, the following steps show the algorithm of EEMD:  
Step 1: Add a white noise ( )w t to the wind speed time series ( )x t  and the new series is obtained as 

( ) ( ) ( )X t x t w t  .                    (6) 

The effect of the added white noise can be controlled by /ne NE  ，where ne is the final standard 

deviation of error defined as the difference between the input signal and the corresponding IMFs, NE  
is the number of ensemble members and  is the amplitude of the added noise, 

Step 2: Decompose the time series ( )X t  into IMFs using the EMD algorithm; 
Step 3: Repeat Step 1 and Step2 with different white noise series each time.  
Step 4: The final result can be obtained by computing the means of corresponding IMFs. 

2.2 Seasonal exponential adjustment (SEA) 
In this study, T, m, l  are given as integers and T=m l . In addition, x t  denotes the wind speed 

time series at time  t 1, 2, ,T  , the seasonal and trend components are denoted as 
t

I and  

respectively. The multiplicative wind speed x t  at time t can be expressed as 

,
t

P

t
P
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t
x =I

t t
P                                                    (7) 

Thus, the seasonal index tI  can be computed as: 

t
I =x /

t t
P                                                   (8) 

Next, dividing the time series x t ,  t 1, 2, ,T   into l groups, and each group represents one cycle, 

and m  time series are used in each cycle because T=m l . In addition, x t ,  t 1, 2, ,T   is denoted as 

11 12 1 1 21 22 2 2x ,x , ,x , ,x ,x ,x , ,x , ,x , ,s m s m     1 2 1 2x ,x , ,x , ,x , ,x ,x , ,x ,k k ks km l l ls    ,x ,lm
1, 2, , , 1, 2, , .k l s m    

where xks  represents the -s th  datum of the k-th  cycle. The unknown trend component can be 

approximated by computing the average of each cycle [20]. The average of the k-th  cycle is obtained 
by the following equation :  

1 2x=(x +x + x ) / , 1, 2, , .k k km m k l      (9) 

Let ksI denote  the normalization data of  items xks , then 

/ ,ks ks kI x x 1, 2, , , 1, 2, ,k l s m  ，  (10) 

and sI is  denoted  as 

1 2( ) / , 1, 2, , .s s s lsI I I I l s m           (11) 

The definition of 
s

I indicates the normalization process and can be expressed as 

1 1 1 1 1 1

1 1 1
x / .

l l m l m l

s ks ks k

s k s k s k

I I x l l
l l l     

    
 
 

      (12) 

From above process, the time series without infect of seasonal component is computed as 
/ , 1, 2, , , 1, 2, , .ks ks sx x I k l s m           (13) 

The new wind speed time series without the seasonal component can be obtained if the data 
items 11 12 1x ,x , ,x ; ,l    and 1 2x ,x , ,xm m ml    are re-recorded back to 1 2x ,x , ,xT   . 

For the additive decomposition model,the following equations are  used to replace Eqs. (10), (11), 
(12), and (13) similar to the multiplicative decomposition model: 

t
x =I

t t
P                                              (14) 

t
I =x

t t
P                                              (15) 

, 1, 2, , , 1, 2, , .ks ks kI x x k l s m                     (16) 

, 1, 2, , , 1, 2, , .ks ks sx x I k l s m            (17) 

In this paper,  the cycle length of the wind speed time series  m = 30(31) . 

2.3 Back-Propagation neural network(BPNN) 
The structure of a BPNN is composed by the input layer, the hidden layer and the output 

layer[18]and the goal of training process is minimizing the global mean sum squared error E between 
the output lz  of real network and the desired output lt , which denoted as 

21
( )

2
l l

l

E t z                                 (18) 

where 

( ( ) ),l lj ji i j l
j j

z f v w x              (19) 
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jiw denote the weight of the connection from input i  to neuron j and ljv  denote the weight of the 

connection from neuron j  to output l， ix is input time series, ,l j  denote the threshold and 

( ), ( )f   denote activation function. The inner product of the input vector and weight vector by a 
nonlinear transfer function is calculated to to get a scalar result for each node in the network.  

To achieve better forecasting performance, the node number of the hidden layer is determined by 
using the Hecht-Nelson algorithm [20]: if the node number of the input layer is n , then the number of 
the hidden layer is 2n+1.  In this paper, The structure of BPNN is composed with one output neuron, 
2 1n   hidden neurons and n  input neurons. To ensure the accuracy of predicted results, the input data 
is normalized in advance, the compute formula is  

  min

max min

x = , 1, 2, , .i i
i

i i

x x
x i n

x x

   


    (20) 

In this paper, a three-layer BPNN is selected to forecast the daily average wind speed. 

2.4 The hybrid EEMD-SEA-BPNN model  
In reality, the wind speed time series are non-linar, irregular and highly-noisy due to the 

nonlinear and intrinsic complexity of weather parameters, forecasting wind speed with the original 
time series directly will lead to lower accuracy , this disadvantage can be overcomed by using the data 
preprocess technical EEMD.  

According to Zhang [21],if the time series are characterized by increasing seasonal variations, the 
multiplicative decomposition method is appropriate to eliminte the seasonal and trend components. 
However, if the seasonal variation is relatively consistent with the trend, the additive decomposition 
model should be used. In reality, it is very difficult to determine whether the addition or multiplication 
operations model is more suitable [22]. Thus, both multiplicative and additive decomposition models 
[23] are used to decompose the seasonal and trend components in wind speed series. 

BPNN was proposed by Rumelhart and McCelland in 1986. It is a multilayered feedforward 
network trained according to the error inverse propagation algorithm and is one of the most widely 
used neural network models at present. BPNN is one of the effectively models in uncovering 
nonlinearity between the input layer and the output layer without sufficient information, and BPNN is 
widely used in back analysis  due to the fact that it can extract useful information from training 
processes without prior assumptions regarding the form of functions related to input and output layers. 
It can approximate an arbitrary nonlinear function with satisfactory performance. 

The EEMD-SEA-BPNN algorithm composed as following steps : 
Firstly, the wind speed time series are decomposed into several layers by using the data preprocess 

EEMD ; 
Secondly, the SEA method (multiplicative and additive decomposition) are used to eliminate 

seasonal effects from actual wind speed data ; 
Thirdly, BPNN model is used to forecast the signal wtihout seasonal effects; 
Finally, the end forecasting results are obtained by combining the seasonal effects.  

3 The numerical results and discussion 

3.1 Study area and evaluation criteria 
Huan County of China, which is the study area, lies in the northeast of Gansu province. It is 

a mountainous area bordering on Shanxi province, Gansu province and the Ningxia Hui Autonomous 
Region. There are 20 towns with a total land area of 9236 square kilometers and a population of 
347000 people, of which agricultural population accounts for 93.7%. With an altitude of 1200-2089 
meters, an average annual rainfall of about 300 mm, its typical climate is cool and droughty. Huan 
County is classified as one of the key counties of the national poverty alleviation plan because of its 
special geographical environment and backward economic development. In June 2011, The total 
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investment is 4.015 billion yuan projects are started to construct the million kilowatt wind farmer in 
Huan County, the total installed capacity is about 100MW. In October 2012, the Tianshui wind farmer  
has generated more than 1000 kwh. 

In this paper, the daily average wind speed time series data set was collected from 1 January 2012 
to 31 December 2018 from the Huan County in China. The daily average wind speed in 2018 are 
forecasted by using the data set in the corresponding months from 2012 to 2017 based on BPNN and 
the idea of eliminating noise effects by using EEMD from actual wind speed datasets and eliminating 
seasonal effects from actual wind speed data set by using SEA. 

The M-W test and K-S test are two effective non-parameter test method to compare the difference 
between  the distributions of two continuous random variables. Suppose that the daily average wind 
speed in 2018 of the Huan County are forecasted by using the wind speed time series from 2012 to 
2017.  First, the two sample M-W test and K-S test are used to determine whether the distributions 
between the paired samples were significantly different. In the experiments, the two effective non-
parameter M-W test and K-S test tool in the SPSS software were used to compare the differences 
between the distributions of the paired samples (years 2012 and 2013, years 2013 and 2014, years 
2014 and 2015, years 2015 and 2016, years 2016 and 2017,  and years 2017 and 2018). The results of 
each paired samples and the probabilities are shown in Table 1 and Table 2. The conclusion can be 
obtained from Table 1 and Table 2 that the differences among the paired samples are not significant 
since the p-values are all larger than the significance level of 0.05, which means that the hybrid 
EEMD-SEA-BPNN model of using the wind speed of January to December from 2012 to 2017 to 
forecast  the wind speed in the corresponding months of 2018 is  resonable.  

Table 1: The M-W test results of daily  average wind speed  from 2012 -2017 

Year 
2012 

-2013 
2013

-2014
2014

-2015
2015 

-2016 
2016 

-2017 

p-values 0.313 0.463 0.494 0.905 0.287 

p-values 0.795 0.510 0.390 0.496 0.773 

 
Table 2:The K-S test results of daily average wind speed from 2012 - 2017 

Year 
2012 
-2013 

2013 
-2014 

2014 
-2015 

2015 
-2016 

2016 
-2017 

Most Extreme 
Differences 

Absolute 0.194 0.129 0.129 0.097 0.194 

Positive 0.065 0.032 0.129 0.065 0.194 

Negative -0.194 -0.129 -0.032 -0.097 -0.032 

K-S 0.762 0.508 0.508 0.381 0.762 

p-values 0.607 0.959 0.959 0.999 0.607 

Most Extreme 
Differences 

Absolute 0.133 0.267 0.167 0.200 0.100 

Positive 0.133 0.267 0.067 0.033 0.100 

Negative -0.067 -0.100 -0.167 -0.200 -0.033 

K-S 0.516 1.033 0.645 0.775 0.387 

p-values 0.952 0.236 0.799 0.586 0.998 

In this paper,order to evaluate the forecasting performance of the hybrid EEMD-SEA-BPNN 
model, the mean square error (MSE), mean absolute error (MAE) and mean absolute percentage error 
(MAPE) are adopted and these measures are defined as following: 



ICEMEE2019

IOP Conf. Series: Earth and Environmental Science 295 (2019) 012030

IOP Publishing

doi:10.1088/1755-1315/295/2/012030

7

 

2

1

1
ˆMSE= ( - )

n

i i

i

x x
n 

 ,                 (21) 

1

1
ˆMAE= -

n

i i

i

x x
n 

 ,
   

                  (22) 

1

ˆ-1
MAPE= 100%

n

n
i i

i i

x x

x

 ,                   (23) 

where ix and ˆ
ix represent the -i th  original and predicted values, respectively. 

3.2 Experimentation design and numerical results 
The wind speed data set of the Huan County in the Loess Plateau was predicted by the proposed 

hybrid EEMD-SEA-BPNN model. The model superiority can be reflected by comparing with other 
popular single forecasting models recommended by recent works. Among those time series forecasting 
models, the single ARIMA model, BPNN model and other simple hybrid models such as EEMD-
BPNN, SEA-BPNN, SEA-ARIMA, EEMD-ARIMA, EEMD-SEA-ARIMA are adopted as the 
benchmarks. 

The simulation process is as following：  
Step 1: Perform the M-W test and K-S test for the  data set to judge whether the wind speed data 

sets (training set and test set ) have significant difference each other or not. 
Step 2: The EEMD technique is employed to eliminate noise of the wind speed time series. 
Step 3: Two models, multiplicative and additive decomposition models are used to eliminate 

seasonal effects from data after noise elimination. 
Step 4: The hybrid forecasting models based on the data pre-processing techniques including 

EEMD-SEA-BPNN, EEMD-BPNN, SEA-BPNN, SEA-ARIMA, EEMD-ARIMA, EEMD-SEA-
ARIMA, and two single models BPNN and ARIMA are used to predict the daily average wind speed.  

Step 5: The forecasting performance of the above models are compared in different benchmarks 
such as MSE, MAE and MAPE. 

The numerical results of MSE, MAE and MAPE are calculated and shown in Table 3 and Table 4; 
Fig. 1 and Fig. 2 shows the forecasting results of the single ARIMA model, BPNN model and other 
hybrid EEMD-BPNN, SEA-BPNN, SEA-ARIMA, EEMD-ARIMA, EEMD-SEA-ARIMA models and 
the original daily average wind speed.  

3.3 Comparison and discussion 
As shown in Table 3 and Table 4, Fig. 1 and  Fig. 2 , the ARIMA, BPNN, EEMD-BPNN, 

EEMD-ARIMA, SEA-BPNN, SEA-ARIMA, EEMD-SEA-ARIMA and EEMD-SEA-BPNN models 
all have good predictive effects, it is clear that the hybrid EEMD-SEA-BPNN model performs much 
better than the hybrid model EEMD-BPNN, SEA-BPNN, SEA-ARIMA, EEMD-SEA-ARIMA, 
EEMD-ARIMA and two single models BPNN and ARIMA model, both multiplicative and additive 
decomposition models are used to eliminate seasonal effects from data. The MSE, MAE and MAPE 
are all smaller than the MSE, MAE and MAPE of the hybrid model EEMD-BPNN, SEA-BPNN, 
EEMD-ARIMA,  SEA-ARIMA, EEMD-SEA-ARIMA and two single models BPNN and ARIMA 
model. The MAPE of   the hybrid EEMD-SEA-BPNN are 21.24% and 22.34% respectively, more 
precisely, compared with ARIMA model, the MAPE of proposed model leads to reductions of 5.78% 
and 10.04%, which means that the the hybrid EEMD-SEA-BPNN model has better forecasting 
performance. 

The conclusion can be obtained from Table 3 and Table 4 that the forecast accuracy are improved 
by using multiplicative and additive decomposition to eliminate seasonal effects. The data 
preprocessing technical of EEMD can improve data quality effectively and forecasting performance. 
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The data pre-processing technology EEMD is an efficient algorithm in improving the forecasting 
performance. In general, the BPNN model has higher performance than the time series model ARIMA 
in the daily average wind speed predicting processes. 

In conclusion, the novel hybrid wind speed forecasting model EEMD-SEA-BPNN, which based on 
data pre-processing method is adopted to predict the wind speed effectively in the Huan County of 
Loess Plateau in China, the simulation results show that the hybrid EEMD-SEA-BPNN model has 
higher robustness than the other models. 

 

 
Fig. 1 The forecasting performance of EEMD-SEA-BPNN, EEMD-BPNN, SEA-BPNN, EEMD-SEA-

ARIMA, EEMD-ARIMA, 
SEA-ARIMA ,BPNN and ARIMA for the multiplicative decomposition model 

 
Fig. 2 The forecasting performance of EEMD-SEA-BPNN, EEMD-BPNN, SEA-BPNN, EEMD-SEA-

ARIMA, EEMD-ARIMA, 
SEA-ARIMA ,BPNN and ARIMA for the additive decomposition model 

 
Table 3. The MSE，MAE and MAPE of EEMD-SEA-BPNN, EEMD-BPNN,SEA-BPNN, EEMD-

SEA-ARIMA, EEMD-ARIMA, 
SEA-ARIMA ,BPNN and ARIMA for the multiplicative decomposition model 

Evaluation 
criteria 

EEMD-
SEA-
BPNN 

EEMD-
BPNN 

SEA-
BPNN 

EEMD-
SEA-

ARIMA

EEMD-
ARIMA 

SEA-
ARIMA 

BPNN ARIMA 

MSE(m/s) 0.2314 0.2502 0.2827 0.2678 0.2838 0.2821 0.3856 0.4011 

MAE(m/s) 0.3908 0.4052 0.4123 0.4186 0.4310 0.4372 0.45354 0.5289 

MAPE (%) 21.24% 22.58% 23.99% 22.95% 25.59% 26.65% 27.02% 28.16% 

 
Table 4. The MSE，MAE and MAPE of EEMD-SEA-BPNN, EEMD-BPNN,SEA-BPNN, EEMD-

SEA-ARIMA, EEMD-ARIMA,  
SEA-ARIMA ,BPNN and ARIMA for the additive decomposition model 
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Evaluation 
criteria 

EEMD-
SEA-
BPNN 

EEMD-
BPNN 

SEA-
BPNN 

EEMD-
SEA-

ARIMA

EEMD-
ARIMA 

SEA-
ARIMA 

BPNN ARIMA 

MSE(m/s) 0.2414 0.2603 0.2828 0.2758 0.3832 0.2771 0.3956 0.4211 

MAE(m/s) 0.4008 0.4083 0.4223 0.4096 0.4670 0.4378 0.5354 0.4378 

MAPE (%) 22.34% 22.59% 23.89% 22.94% 26.59% 27.65% 31.02% 32.37% 

4. Conclusions 
It is important for wind farm management to obtain accurate wind speed forecasting results due 

to the uncertainty about wind power. The associated benefits can be gained from estimating power 
output if the bias in wind speed prediction is reduced by 10% in the electricity market [24]. In this 
paper, the model that combined the EEMD method and SAM with BPNN was constructed and tested 
with original wind speed data sets for 2018 in the Huan County of China. Numerical results show that 
the hybrid EEMD-SEA-BPNN model can forecast the daily average wind speed one year ahead with a 
better accuracy compared with forecasting models such as EEMD-BPNN, SEA-BPNN, EEMD-SEA-
ARIMA, EEMD-ARIMA, SEA-ARIMA, BPNN and ARIMA. The numerical results show that the 
values of MAPE of the hybrid EEMD-SEA-BPNN at most are 19.23% and 22.88% for the two real 
wind speed datasets.  
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