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Abstract. In this paper we formulated and analyzed the eco-epidemiological SIS model under
sparse effect, and the sufficient condition of the local asymptotical stability of the equilibrium
was studied with the method of latent root, analyze the global asymptotical stability of the
boundary equilibriums, and also discuss the local asymptotical stability of the positive
equilibrium, and established the sufficient condition of their stability .

1. Introduction
A large number of epidemiological dynamics models only involve the epidemic of a single

population. However, in nature, the people cannot exist alone, and then they are usually competing
with other species for food resources, external environment or prey on other species. Therefore, it is
necessary to consider the impact of disease on the basis of population dynamics model, or the
interaction of populations based on epidemic model, that is, we combine the epidemic dynamics model
with the population dynamics model, so as to make the established model more realistic than the
individual epidemic model or the individual population dynamics model. In [1, 2, 3],the authors
discuss modeling and analysis of a predator-prey model with disease in the prey. In [4, 5, 6],the
authors research eco—epidemiological stochastic model of predator with epidemic.

We discuss eco-epidemiological SIS model disease only in the spread between infected predator is
death and predators, and the infected predator does not feed on prey.

We discuss the model as follows.

d—XzaXz(r—X)—bXS

dt

§=eXS—dIS—ﬂSI+51 (0.1)
%:cl+ﬂSI—d21—5I

Where X denote the densities of the prey, S denote the densities of susceptible predator and / is
the infective predator. The functionf(X) = aX?(r — X)is the density - dependent function with
sparasing effect, b denote the growth rate of predator for predating prey, e = [b(0 <1 < 1), lis the
transmission coefficient,, c is the infective predator with sparssing effect, d, is the death rate of
susceptible predator and d, denote the infective predator, Note that d; < d,, thinking about the
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death of illness, fis the adequate rate. This model supposed the infectious disease but with no
recovery.

Theorem1: R3+ are positively invariant with respect to system.

2. The analysis of equilibrium point
The nonnegative equilibrium point of model (0.1) as follows:

£ (0006 ~(00),5, - 4,24 )
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(2) The Conditions of Existence for equilibriums:

: .. . ) d
Where, with no conditions E;, E, exist, while » >—", then boundary equilibrium point £,
e

d,

exist; when » =—L then E, = E,, whenr > , 23h <r < r", then equilibrium point E, exist,

e e
whenr > ", then endemic equilibrium E, exist. whenr = 2h , then E,=FE,.

(3) The the equilibrium point for local asymptotical analysis in the system .

According to the analysis of the characteristic equation about the Jacobian matrix of system of
(0.1) , we have the result .

Theorem2 when o < 1, boundary equilibrium point E; is locally asymptotically stable, when
1 <o <2, equilibrium point E, is locally asymptotically stable, wheno >2, R, <1, equilibrium

. - d,— . ey . .
point £ is instable, when R, >1, S > #, endemic equilibrium £, is locally asymptotically
,+0—c
_eb _ T _ red;
stable. Where o = o Ry = = hetra

3. Global Stability
Theorem 3 In R’, when o <1,we have the global stability of boundary equilibrium £, = (k, 0, 0) )

Proof In order to prove the result of system (0.1) is non dimensional change
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dt
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Constructing a Liapunov function ¥ : R} — R
V(t) =x—1-Inx+s+i
Find the derivative along the solution of system (3.1)
V'(t)= x'—£+s'+i’ = —(l—x)[arzx(l—x)—cs} +erxs—d,s—(d,—c)i
S—(1fx)[arzx(l—x)—cs]+(erx—d1)s
Obviously, in €2, On the right hand side of the first term must be nonpositive, Otherwise
arzx(l—x)—cs <0 , then it is contradiction that E, is "saddle - node". In Q ,
(erx—dl)s S(er—dl)s. wheno <1, for the second term , on the right hand side of it is
negative. When o <1, V'(t) <0, wheno =1, V'(t) < —(l—x)[arzx(l—x)—cs] <0, on the

same V'(t) =0, Ifand only if x=1, s=0. therefore, we have the result that lim S(l) =0,

t—+00

lim x(t)=1, then we have the result from the third equations of system(9), when ¢t —>o0 ,

t—+0

S(t) —0,1 (t) —> Ois satisfied . Therefore , E, is globally stable in Q2.

Theorem 4 when R, >1, the disease becomes endemic disease, and £, is globally stable.

Proof When R, >1, then E,is exist, we construct a Liapunov function

V(t):WI X_XZ_XZIH « +W2 S_Sz_Szlni* +W3 1_12_12ln_*
X s: L
Where W, > 0,(i = 1,2) , obviously we have the conclusion V(t ) >0.

We have the derivative along the solution of system (0.1) as following
V'(t)=—aw, ()(Jr)(;—r)()(—)(;‘)2 +(we—w,b)(X - X;)(S-5;)+
(wy—wy) B(S=8;)(1-1)+8[(1+1")~(5+5")]
(whereq, = X —X;,q,=S-S5,,q; =1-1,)
let w, =4, w,=B, w,=C, then
V'(t)= —aA(X+X2* —r)ql2 +(Be—4b)q,q, +(C—B) Bg,q, +
S| (1+17)=(5+5")]
Choose the appropriate positive number 4, B, C, sothatBe—Ab=0,C—-B=0, then
Vi(t)=—ad(X +X; -r)g} +5 (1+1")~(S+S")]
Existence knowledge with £,: X + X, —r >0, because of (1+1*)—(S+S*) <0. So
V'(t)<0. E, is globally stable in R’.
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